Exam

Exercise 1 To approximate the solution to the ODE

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \tag{1a}\\
y(0)=2
\end{array}\right.
$$

we propose to use the Adams-Moulton scheme

$$
\begin{equation*}
y_{n+2}-y_{n+1}=\Delta t\left(\frac{5}{12} f\left(t^{n+2}, y_{n+2}\right)+\frac{2}{3} f\left(t^{n+1}, y_{n+1}\right)-\frac{1}{12} f\left(t^{n}, y_{n}\right)\right) . \tag{2}
\end{equation*}
$$

1. (a) Scheme (2) is a 2-step scheme (see Definition 2.9 in the lecture notes) characterized by

$$
\alpha_{0}=0, \alpha_{1}=-1, \alpha_{2}=1, \beta_{0}=\frac{-1}{12}, \beta_{1}=\frac{2}{3} \text { and } \beta_{2}=\frac{5}{12} .
$$

According to Prop. 2.6, this scheme is consistant iff

$$
\sum_{k=0}^{2} \alpha_{k}=0 \text { and } \sum_{k=0}^{2} k \alpha_{k}=\sum_{k=0}^{2} \beta_{k} .
$$

We easily check that

$$
\sum_{k=0}^{2} \alpha_{k}=0-1+1=0 \text { and } \sum_{k=0}^{2} k \alpha_{k}=0 \times 0+1 \times(-1)+2 \times 1=1=\frac{-1}{12}+\frac{2}{3}+\frac{5}{12}=\sum_{k=0}^{2} \beta_{k} .
$$

(b) The Dahlquist statement (Prop. 2.7) ensures that the scheme is stable if the polynomial $\rho(x)=$ $\sum_{0 \leq k \leq 2} \alpha_{k} x^{k}$ has its roots in $[-1,1]$ and roots of modulus 1 are simple. Here, we have $\rho(x)=x^{2}-x=$ $x(x-1)$ whose roots are 0 and 1 . Hence the stability.
(c) Stability and consistency imply the convergence of the scheme due to the Lax-Richtmyer theorem (Th. 2.2). The fact that a scheme is convergent means that if we denote by $\left(y_{n}\right)$ the numerical solution and by \hat{y} the exact solution, then $\hat{y}\left(t^{n}\right)-y_{n}$ goes to 0 as Δ t goes to 0 : the more Δt decreases, the more accurate the numerical solution (close to the exact solution).
(d) We apply Prop. 2.8 and assess each $i \geq 2$ until the relation in Prop. 2.8 is not satisfied:

- $i=2: \sum_{0 \leq k \leq 2} k^{2} \alpha_{k}=0 \times 0+1 \times(-1)+4 \times 1=3=2\left(0 \times \frac{-1}{12}+1 \times \frac{2}{3}+2 \times \frac{5}{12}\right)=2 \sum_{0 \leq k \leq 2} k \beta_{k}$. The scheme is at least of order 2.
- $i=3: \sum_{0 \leq k \leq 2} k^{3} \alpha_{k}=0 \times 0+1 \times(-1)+8 \times 1=7=3\left(0 \times \frac{-1}{12}+1 \times \frac{2}{3}+4 \times \frac{5}{12}\right)=3 \sum_{0 \leq k \leq 2} k^{2} \beta_{k}$. The scheme is at least of order 3.
- $i=4: \sum_{0 \leq k \leq 2} k^{4} \alpha_{k}=0 \times 0+1 \times(-1)+16 \times 1=15 \neq 16=4\left(0 \times \frac{-1}{12}+1 \times \frac{2}{3}+8 \times \frac{5}{12}\right)=4 \sum_{0 \leq k \leq 2} k^{3} \beta_{k}$. The scheme is exactly of order 3.
(e) Judging from the definition $t^{n}=(n-1) \Delta t$, we have $t^{1}=0, t^{2}=\Delta t$ and $t^{N}=1$, which is coherent with the domain of study $[0,1]$.
(f) As Scheme (2) is a 2-step scheme, we need two initializing values (to compute y_{3}, we need to know y_{2} and y_{1}).
(g) As y_{1} must be an approximation of $\hat{y}\left(t^{1}\right)=\hat{y}(0)=2$ according to (1b), we choose $y_{1}=2$. We now tackle the computation of $y_{2} \approx \hat{y}\left(t^{2}\right)=\hat{y}(\Delta t)$ which we do not know. As Scheme (2) is of order 3 ,
we must choose a value which is accurate at order 3 , that is to say $y_{2}=\hat{y}(\Delta t)+\mathscr{O}\left(\Delta t^{3}\right)$. To do so, we perform a Taylor expansion (Prop. 1.17):

$$
\hat{y}(\Delta t)=\hat{y}(0)+\Delta t \hat{y}^{\prime}(0)+\frac{\Delta t^{2}}{2} \hat{y}^{\prime \prime}(0)+\mathscr{O}\left(\Delta t^{3}\right) .
$$

$\hat{y}^{\prime}(0)$ is deduce from $O D E$ (1a) and from the initial condition (1b): $\hat{y}^{\prime}(0)=f(0, \hat{y}(0))=f(0,2)$. Likewise, to compute $\hat{y}^{\prime \prime}(0)$, we differentiate $O D E$ (1a) once to obtain by the chain rule

$$
\hat{y}^{\prime \prime}(t)=\frac{\mathrm{d}}{\mathrm{~d} t}[f(t, \hat{y}(t))]=\frac{\partial f}{\partial t}(t, \hat{y}(t))+\hat{y}^{\prime}(t) \frac{\partial f}{\partial y}(t, \hat{y}(t))=\frac{\partial f}{\partial t}(t, \hat{y}(t))+f(t, \hat{y}(t)) \frac{\partial f}{\partial y}(t, \hat{y}(t)) .
$$

Hence we set $y_{2}=2+\Delta t f(0,2)+\left(\partial_{t} f(0,2)+f(0,2) \partial_{y} f(0,2)\right) \frac{\Delta t^{2}}{2}$.
(h) In Scheme (2), y_{n+2} is present in both sides of the equality. Thus, given y_{n} and y_{n+1}, it may not be possible to compute y_{n+2}. The scheme is implicit.
2. (a) In this particular case, $O D E$ (1) reads

$$
\left\{\begin{array}{l}
y^{\prime}(t)=y(t), \tag{3a}\\
y(0)=2 .
\end{array}\right.
$$

It is thus a 1st-order linear ODE with constant coefficients (see (2.2) in the lecture notes). The exact solution \hat{y} is given by $\hat{y}(t)=2 e^{t}$.
(b) Scheme (2) applied to ODE (3a) is

$$
\begin{equation*}
y_{n+2}-y_{n+1}=\Delta t\left(\frac{5}{12} y_{n+2}+\frac{2}{3} y_{n+1}-\frac{1}{12} y_{n}\right) . \tag{4}
\end{equation*}
$$

(c) As stated in Q. 1(h), the Adams-Moulton scheme is implicit. It may not be possible to compute y_{n}. But in the linear case of Q. 2, (4) leads to

$$
\begin{equation*}
\left(1-\frac{5 \Delta t}{12}\right) y_{n+2}-\left(1+\frac{2 \Delta t}{3}\right) y_{n+1}+\frac{\Delta t}{12}=0 . \tag{5}
\end{equation*}
$$

Provided that $1-\frac{5 \Delta t}{12} \neq 0^{1}$ and $\frac{\Delta t}{12} \neq 0$, relation (5) defines a 2 nd-order linear induction with constant coefficients ($p .10$ in the lecture notes). It is characterized by

$$
\alpha=2, \beta=2\left(1+\Delta t+\frac{\Delta t^{2}}{2}\right), \zeta=1-\frac{5 \Delta t}{12}, \eta=-1-\frac{2 \Delta t}{3} \text { and } \theta=\frac{\Delta t}{12}
$$

To compute y_{n}, we study the characteric equation $\zeta r^{2}+\eta r+\theta=0$. Given that

$$
\Delta=\eta^{2}-4 \zeta \theta=1+\Delta t+\frac{7}{12} \Delta t^{2}>0
$$

we deduce that $y_{n}=\kappa r_{1}^{n}+\lambda r_{2}^{n}$ where κ and λ can be expressed from α and β.
(d) The 3rd-order Runge-Kutta scheme (see p. 27 in the lecture notes) applied to ODE (3a) reads

$$
z_{n+1}=z_{n}+\frac{\Delta t}{6}\left(k_{1}+4 k_{2}+k_{3}\right)
$$

[^0]with
\[

$$
\begin{aligned}
& k_{1}=f\left(t^{n}, z_{n}\right)=z_{n} \\
& k_{2}=f\left(t^{n}+\frac{\Delta t}{2}, z_{n}+\frac{\Delta t}{2} k_{1}\right)=z_{n} \times\left(1+\frac{\Delta t}{2}\right), \\
& k_{3}=f\left(t^{n+1}, z_{n}+\Delta t\left(2 k_{2}-k_{1}\right)\right)=z_{n} \times\left(1+\Delta t+\Delta t^{2}\right)
\end{aligned}
$$
\]

Hence

$$
z_{n+1}=z_{n} \times\left(1+\Delta t+\frac{\Delta t^{2}}{2}+\frac{\Delta t^{3}}{6}\right)
$$

(e) The previous relation shows that $\left(z_{n}\right)$ is a geometric sequence (p. 10 in the lecture notes). We deduce that

$$
z_{n}=z_{1}\left(1+\Delta t+\frac{\Delta t^{2}}{2}+\frac{\Delta t^{3}}{6}\right)^{n-1}=2\left(1+\Delta t+\frac{\Delta t^{2}}{2}+\frac{\Delta t^{3}}{6}\right)^{n-1}
$$

(f) Both Adams-Moulton and Runge-Kutta 3 (RK3) are 3rd-order accurate. However, in the general case, the Adams-Moulton scheme is implicit (unlike RK3) which is more expensive from a computational point of view. Thus RK3 seems preferable.

Exercise 2 1. The Cholesky decomposition (Prop. 1.9): If $A \in \mathscr{M}_{n}(\mathbb{R})$ is symmetric and positive-definite (Def. 1.8 and Prop. 1.12), then there exists $B \in \mathscr{M}_{n}(\mathbb{R})$ upper triangular such that $A=B^{T} B$. Moreover, there exists a unique B such that $B_{i i}>0$ for all $i \in\{1, \ldots, n\}$.
2. To build the algorithm, we notice that

$$
A_{i j}=\sum_{k=1}^{n}\left(B^{T}\right)_{i k} B_{k j}=\sum_{k=1}^{n} B_{k i} B_{k j}=\sum_{k=1}^{\min (i, j)} B_{k i} B_{k j}
$$

since B is upper triangular (which implies $B_{i j}=0$ if $i<j$). Hence we can compute components of B row by row. The MATLAB function reads

```
function \(B=\) chol_yp (A)
\% Compute the Cholesky decomposition
\% of a symmetric positive-definite matrix \(A\)
n=length ( \(A(1,:))\); \% number of columns
\(m=\) length ( \(A(:, 1)\) ); \% number of rows
\% Tests: does A satisfy the Cholesky hypotheses?
if \(m \sim=n\)
    \(\boldsymbol{\operatorname { d i s p }}\left({ }^{\prime} A_{\sqcup}\right.\) is not \(_{\sqcup} a_{\sqcup}\) square \(_{\sqcup}\) matrix');
    return
end
if \(A^{\prime} \sim=A\)
    \(\boldsymbol{\operatorname { d i s p }}\left({ }^{\prime} A_{\sqcup}\right.\) is not \(_{\square}\) symmetric ');
    return
end
\(B=\boldsymbol{z e r o s}(n, n)\);
```

```
\% Algorithm
for \(i=1: n\)
    sum_B=sum( \(B(1: i-1, i) . * B(1: i-1, i))\);
    if \(A(i, i)-s u m \_B<0\)
        disp('A \(A_{\sqcup}\) is not \(\left.p o s i t i v e-d e f i n i t e '\right) ;\)
        return
    else
        \(B(i, i)=\boldsymbol{s q r t}\left(A(i, i)-s u m \_B\right) ;\)
    end
    for \(j=i+1: n\)
        \(\operatorname{sum} \_B=\operatorname{sum}(B(1: i-1, i) . * B(1: i-1, j))\);
        \(B(i, j)=\left(A(i, j)-s u m \_B\right) / B(i, i) ;\)
    end
end
```

3. (a) A is obviously symmetric. To prove that A is positive-definite, we determine its eigenvalues (Prop. 1.12). Due to the Sarrhus law for 3×3 determinants, we have

$$
\begin{aligned}
\operatorname{det}\left(A-X \mathscr{I}_{3}\right) & =\left|\begin{array}{ccc}
2-X & -1 & 0 \\
-1 & 2-X & -1 \\
0 & -1 & 2-X
\end{array}\right|=(2-X)^{3}-(2-X)-(2-X) \\
& =(2-X)\left[(2-X)^{2}-2\right]=(2-X)\left(X^{2}-4 X+2\right)=(2-X)(X-2-\sqrt{2})(X-2+\sqrt{2}) .
\end{aligned}
$$

The eigenvalues are $2-\sqrt{2}, 2$ and $2+\sqrt{2}$ which are all positive. We can thus apply the Cholesky decomposition to A.
(b) According to the algorithm from Q. 2, we deduce that

$$
B=\left(\begin{array}{ccc}
\sqrt{2} & \frac{-1}{\sqrt{2}} & 0 \\
0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{2}{3}} \\
0 & 0 & \frac{2}{\sqrt{3}}
\end{array}\right)
$$

4. The Cholesky decomposition helps solve linear systems when the underlying matrix is symmetric and positive-definite. The corresponding algorithm is less expensive than standard algorithms for linear systems.
5. Given $b \in \mathbb{R}^{n}$ and $A \in \mathscr{M}_{n}(\mathbb{R})$ symmetric and positive-definite, we aim at solving $A x=b$. To do so, we use the Cholesky decomposition of A and notice that the linear system is equivalent to $B^{T} B x=b$ which can be decomposed into two triangular systems: $B^{T} y=b$ and then $B x=y$. Hence:
```
Algorithm 1 Resolution of a symmetric linear system
    Data: \(A \in \mathscr{M}_{n}(\mathbb{R})\) symmetric and positive-definite, \(b \in \mathbb{R}^{n}\)
    Compute \(B\) such that \(A=B^{T} B\)
    Solve the lower triangular linear system \(B^{T} y=b\)
        \(\triangleright\) Use Algorithm from Q. 2
        \(\triangleright\) Alg. 1, p. 16 in the lecture notes
    Solve the upper triangular linear system \(B x=y\)
        \(\triangleright\) Alg. 2, p. 16 in the lecture notes
```


[^0]: ${ }^{1}$ Which is always the case since $1-\frac{5 \Delta t}{12} \neq 0 \Longleftrightarrow N \neq \frac{5}{12}+1 \notin \mathbb{N}$.

