Exercise 1 Let $\left(u_{n}\right)$ be the sequence defined by

$$
u_{0}=0, \forall n \in \mathbb{Z}_{+}, u_{n+1}=\frac{u_{n}+2}{4-u_{n}}
$$

Set $v_{n}=\frac{u_{n}-1}{u_{n}-2}$ and $f(x)=\frac{x+2}{4-x}$.

1. Solve the equations $f(x)=1$ and $f(x)=2$.
2. Prove that if $u_{n}<1$, then $u_{n+1}<1$. Deduce that the sequence $\left(u_{n}\right)$ is well defined.
3. Show that $\left(v_{n}\right)$ is well defined and geometric. Deduce the expression of v_{n} with respect to n.
4. Derive the expression of u_{n} with respect to n. What is the limit of $\left(u_{n}\right)$?

Exercise 2 Determine the expression of u_{n} solution of

$$
\left\{\begin{array}{l}
u_{0}=0, u_{1}=1 \\
u_{n+1}=-u_{n}-\frac{5}{36} u_{n-1}, n \geq 1
\end{array}\right.
$$

Exercise 3 Write out the Cholesky algorithm. Determine the cost of the algorithm.
Exercise 4 Let A_{α} be the matrix

$$
A_{\alpha}=\left(\begin{array}{ccc}
\alpha & 0 & -1 \\
0 & \alpha & -1 \\
-1 & -1 & \alpha
\end{array}\right)
$$

parametrized by $\alpha \in \mathbb{R}$.

1. Determine the eigenvalues of A_{α} and some corresponding eigenvectors.
2. For which values of α the matrix A_{α} is invertible?
3. (a) For which values of α the matrix A_{α} admits a Cholesky decomposition?
(b) For those values, compute the decomposition from the algorithm of Exercise 3.
(c) By means of an up-down algorithm, solve explicitly the linear system $A_{\alpha} x=b$ for some $b \in \mathbb{R}^{n}$.
(d) Deduce the expression of A_{α}^{-1}.
(e) For a symmetric positive-definite matrix, the condition number of a matrix is the ratio of the largest eigenvalue by the lowest one. Compute the condition number of A_{α}.
(f) Which asymptotics upon α corresponds to the most suitable case for inverting A_{α} ?
4. We assume in this question that $\alpha \neq 0$. We aim at approximating the solution of $A_{\alpha} x=b$ by means of an iterative method, which is the Jacobi method: writing $A_{\alpha}=D_{\alpha}-E-F$ where D_{α} is the diagional matrix whose coefficients are the diagonal entries of A_{α}, E is lower triangular and F is upper triangular. The Jacobi method consists of the sequence $D_{\alpha} x^{n+1}=(E+F) x^{n}+b$.
(a) Write down the matrices D_{α}, E and F.
(b) For which values of α is the method convergent?
(c) What are the induction relations for x_{1}^{n}, x_{2}^{n} and x_{3}^{n}.
(d) Compute the expression of x^{n} with respect to n.
(e) What is the limit of x^{n} as n goes to ∞ ? Comment.

Exercise 5 Give the solutions to the following ODEs:

$$
\hat{y}^{\prime}(t)=2 \hat{y}(t)+1 ; \quad \hat{y}^{\prime}(t)=\frac{t}{t^{2}+1} \hat{y}(t) ; \quad \hat{y}^{\prime}(t)=-(\tan t) \hat{y}(t)+\cos t ; \quad t \hat{y}^{\prime}(t)=-\hat{y}(t)+t,
$$

supplemented with the initial condition $\hat{y}\left(t_{0}\right)=y_{0}$. Specify for which t_{0} such solutions exist.
Exercise 6 1. Determine the solutions to the second-order ODE

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)=0 .
$$

2. We then focus on the $O D E$

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)=\cos t \tag{1}\\
y(0)=0 \\
y^{\prime}(0)=1
\end{array}\right.
$$

(a) Prove that there exists a unique solution to (1).
(b) What are the eigenvalues of the corresponding matrix?
(c) Determine C such that $y(t)=C(t) e^{t}$ satisfies (1).
(d) Conclude.

Exercise 7 We consider the ordinary differential equation

$$
\begin{equation*}
\left(t^{2}+1\right) \hat{y}^{\prime}(t)+t=t \hat{y}(t)^{2} . \tag{2}
\end{equation*}
$$

1. Prove the existence of a solution to (2) defined for $t \in \mathbb{R}$.
2. Determine a constant solution to (2).
3. Set $\hat{z}=\hat{y}-1$. Show that \hat{z} satisfies

$$
\begin{equation*}
\left(t^{2}+1\right) \hat{z}^{\prime}(t)=t\left(2 \hat{z}(t)+\hat{z}^{2}(t)\right) \tag{3}
\end{equation*}
$$

4. Set $\hat{w}=\frac{1}{\hat{z}}$. Determine the equation satisfied by \hat{w} and solve (2).
5. Apply the explicit and implicit Euler schemes to (2).

Exercise 8 These equations model the evolution of an isolated predator-prey system (for instance rabbits and lynx):

$$
\begin{cases}x^{\prime}(t)=x(t)(3-y(t)), & x(0)=1 \tag{4}\\ y^{\prime}(t)=y(t)(x(t)-2), & y(0)=2\end{cases}
$$

1. Determine which variable corresponds to the number of preys.
2. Show that there is no constant solution to Problem (4).
3. Rewrite Eqs. (4) as $\mathbf{Y}^{\prime}(t)=\mathbf{F}(\mathbf{Y}(t))$, where $\mathbf{Y}=\binom{x}{y}$. Deduce that there exists a unique maximal solution Y.
4. Prove that x and y cannot vanish. Deduce the sign of each unknown.
5. We set $H(x, y)=x-2 \ln x+y-3 \ln y$. H is called the Hamiltonian of the system. Show that for all $t \geq 0$, $H(x(t), y(t))=H(x(0), y(0))$.
6. Apply the explicit Euler scheme to Eq. (4). Is the numerical Hamiltonian also constant?
7. We introduce the symplectic Euler scheme:

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\Delta t x_{n+1}\left(3-y_{n}\right), \\
y_{n+1}=y_{n}+\Delta t y_{n}\left(x_{n+1}-2\right)
\end{array}\right.
$$

Prove this scheme is consistant.

In the sequel, $f:[0,1] \times \mathbb{R} \longmapsto \mathbb{R}$ denotes a smooth function of class \mathscr{C}^{1}. We aim at approximating the solution of the ODE

$$
\begin{equation*}
\hat{y}^{\prime}(t)=f(t, \hat{y}(t)) . \tag{5}
\end{equation*}
$$

Let T be some positive number and $N \in \mathbb{Z}_{+}, N \neq 0$. Then we set $\Delta t=\frac{T}{N}$ and $t^{n}=n \Delta t, 0 \leq n \leq N$.

Exercise 9 We assume in this exercise that $f(t, y)=-y$.

1. Solve (5) in this case supplemented with the initial condition $\hat{y}(0)=1$.
2. Apply the explicit Euler scheme to construct the sequence $\left(y_{n}\right)$.
3. Yield the explicit expression of y_{n} with respect to n and Δt. Is the scheme relevant for any Δt ?
4. Compare y_{N} and $\hat{y}(T)$. Conclude.
5. Follow the same directions about the Heun scheme.
6. Which scheme seems to be the most efficient?

Exercise 10 We take in this exercise $f(t, y)=1-2 y$.

1. Solve (5) in this case supplemented with the initial condition $\hat{y}(0)=1$.
2. Apply the implicit Euler scheme to construct the sequence $\left(y_{n}\right)$.
3. Yield the explicit expression of y_{n} with respect to n and Δt.

Exercise 11 To provide an approximate solution to (5), we propose the scheme

$$
\frac{3 y_{n+2}-4 y_{n+1}+y_{n}}{2}=\Delta t f\left(t^{n+2}, y_{n+2}\right) .
$$

1. How can this scheme be initialized?
2. Show that the scheme is convergent. Determine its order.
3. Is this scheme explicit?
4. In the case $f(t, y)=-y$, solve the linear inductive relation for y_{n}.
5. Propose a modification of the right hand side in the previous scheme to improve the order.

Exercise 12 The enhanced Euler scheme reads

$$
y_{n+1}=y_{n}+\Delta t f\left(t^{n}+\frac{\Delta t}{2}, y_{n}+\frac{\Delta t}{2} f\left(t^{n}, y_{n}\right)\right)
$$

1. Compute $\hat{y}^{\prime \prime}(t)$ for \hat{y} solution of (5).
2. Show this scheme is convergent and determine its order.

Exercise 13 We aim atstudying a numerical scheme dedicated to the resolution of the autonomous ordinary differential equation

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(y(t)), \tag{6a}\\
y(0)=y_{0},
\end{array}\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a \mathscr{C}^{∞} function. We consider the lintrap scheme

$$
\begin{equation*}
\frac{y_{n+1}-y_{n}}{\Delta t}=f\left(y_{n}\right)+f^{\prime}\left(y_{n}\right) \frac{y_{n+1}-y_{n}}{2} \tag{7}
\end{equation*}
$$

where $\Delta t>0$ is some positive number and we set $t^{n}=n \Delta t, n \geq 0$.

1. Does there exist a unique solution to $O D E$ (6)?
2. Study of the numerical scheme
(a) Is the scheme explicit or implicit?
(b) Is the scheme well-defined in any case? Show that if f is monotone-decreasing, then the scheme is well-defined.
(c) For \hat{y} solution to (6), compute $\hat{y}^{\prime \prime}(t)$.
(d) Prove that (7) is a consistant scheme up to order 2.
3. Investigation of a particular case. We suppose in this question that $f(y)=(y+1)^{2}$.
(a) Compute the exact solution \hat{y} to (6) in that case.
(b) Apply Scheme (7) to ODE (6). Express y_{n+1} as a function of Δt and y_{n}.
(c) Let us introduce $z_{n}=\frac{1}{y_{n}+1}$. Show that $\left(z_{n}\right)$ satifies an arithmetic progression.
(d) Deduce the expression of y_{n} with respect to n and Δt.
(e) Compare y_{n} and $\hat{y}\left(t^{n}\right)$. Conclude.

Exercise 14 Let us consider the system

$$
\left\{\begin{array}{l}
x^{\prime}(t)=y(t), x(0)=1 \tag{8}\\
y^{\prime}(t)=-x(t), y(0)=0
\end{array}\right.
$$

1. Prove that the trajectories $t \longmapsto(x(t), y(t))$ are included in the unit circle $x^{2}+y^{2}=1$.
2. Write out the explicit Euler scheme, the implicit Euler scheme and the Crank-Nicholson scheme for the resolution of (8).
3. Do these schemes preserve the trajectories?

Exercise 15 Let us consider the ODE

$$
\left\{\begin{array}{l}
\hat{y}^{\prime}(t)+3 \hat{y}(t)^{2}=0, \tag{9}\\
\hat{y}(0)=1 .
\end{array}\right.
$$

1. Solve (9). What is the limit of $\hat{y}(t)$ as $t \rightarrow+\infty$?
2. Apply the explicit Euler scheme to this ODE and study the limit as $n \rightarrow+\infty$.
3. We propose the following scheme

$$
\begin{equation*}
\frac{y_{n+1}-y_{n}}{\Delta t}+3\left(\frac{y_{n+1}+y_{n}}{2}\right)^{2}=0 . \tag{10}
\end{equation*}
$$

(a) Derive an expression of y_{n+1} with respect to y_{n} and deduce a condition upon Δt for the limit to be correct as $n \rightarrow+\infty$.
(b) Show this scheme is consistant at order 2.

Exercise 16 Let us consider the following differential equation

$$
\begin{equation*}
-u^{\prime \prime}(x)+u^{\prime}(x)+\left(\alpha^{2}-\frac{1}{4}\right) u(x)=f(x) \tag{11}
\end{equation*}
$$

where $\alpha>0$ is some real number and f is a continuous function over \mathbb{R}_{+}. To supplement Equation (11), we propose two types of boundary conditions:

$$
\begin{array}{ll}
u(0)=0, & u^{\prime}(0)=1 \\
u(0)=0, & u(1)=2 \tag{BC2}
\end{array}
$$

1. We assume in this question ONLY that $f(x)=0$ for all $x \geq 0$.
(a) Compute the expression of the solution to (11) together with ($\mathrm{BC1}$).
(b) What is the solution for (BC 2)?

2. General case.

(a) Prove that there exists a unique solution to Equation (11) (for some given f) supplemented with (BC1).
(b) What can we say about the problem (11)-(BC2)?
(c) Let us set

$$
\forall x \geq 0, \hat{u}(x)=e^{\left(\frac{1}{2}+\alpha\right) x}\left(c_{0}-\frac{1}{2 \alpha} \int_{0}^{x} f(y) e^{-\left(\frac{1}{2}+\alpha\right) y} \mathrm{~d} y\right)+e^{\left(\frac{1}{2}-\alpha\right) x}\left(d_{0}+\frac{1}{2 \alpha} \int_{0}^{x} f(y) e^{-\left(\frac{1}{2}-\alpha\right) y} \mathrm{~d} y\right) .
$$

Show that \hat{u} satisfies (11).
(d) Determine $\left(c_{0}, d_{0}\right)$ so that \hat{u} also satisfies (BC 1). Same question for (BC2).
(e) Is this expression for \hat{u} always useful?
3. Numerical approach. Let us set $\Delta x=\frac{1}{N-1}$ for some integer $N \geq 2$ and $x_{i}=(i-1) \Delta x$ for $i \in\{1, \ldots, N\}$. In this section, we are interested in designing a numerical scheme to provide approximations u_{i} of $\hat{u}\left(x_{i}\right)$.
(a) Propose a finite-difference scheme to approximate the solution to (11).
(b) How to take $(\mathrm{BC1})$ into account? Write out the corresponding algorithm to compute u_{i} for all $i \in\{1, \ldots, N\}$.
(c) Same question for (BC2). What can you say about the matrix of the underlying linear system?
4. Substitution. Let v be the function such that $u(x)=v(x) e^{x / 2}$.
(a) Prove that v is a solution of the following equation

$$
\begin{equation*}
-v^{\prime \prime}(x)+\alpha^{2} v(x)=f(x) e^{-x / 2} \tag{12}
\end{equation*}
$$

(b) What are the boundary conditions for v corresponding to (BC2)?
(c) Propose a finite-difference numerical scheme to solve (12)-(BC2). Does this seem more practical than in Question 3.(c)?
(d) We admit that the Cholesky factorization of a tridiagonal matrix $A \in \mathscr{M}_{n}(\mathbb{R})$ is $B^{T} B$ where B is a bidiagonal upper matrix of the form

$$
\left(\begin{array}{cccc}
\sqrt{\beta_{1}} & \gamma_{2} & 0 & 0 \\
0 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \gamma_{n-1} \\
0 & \cdots & 0 & \sqrt{\beta_{n}}
\end{array}\right)
$$

Adapt the Cholesky algorithm to the factorization of the matrix of Question 4.(c). In particular, show that (β_{i}) satisfies the inductive relation

$$
\beta_{i}+\frac{1}{\beta_{i-1}}=2+\alpha^{2} \Delta x^{2}, \quad \beta_{1}=2+\alpha^{2} \Delta x^{2}
$$

What is γ_{i} equal to?
Exercise 17 We aim at solving the autonomous (i.e. f does not depend on t) ordinary differential equation

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(y(t)), \tag{13}\\
y(0)=\frac{1}{2}
\end{array}\right.
$$

We assume that f is of class $\mathscr{C}^{2}(\mathbb{R})$.

1. Justify that $O D E$ (13) has a unique equation denoted \hat{y}. What is the regularity of \hat{y} ?
2. Give the expression of the solution in the following cases:
(a) $f(x)=1$;
(b) $f(x)=\lambda x$ with $\lambda \in \mathbb{R}$.
3. In the general case, we cannot provide an explicit expression. That is why we aim at constructing approximate values of the solution at some points. More precisely, we set

$$
t^{n}=n \Delta t, \Delta t=\frac{3}{N}
$$

for some fixed integer $N \geq 1$. A numerical scheme is a method whose purpose is to compute y_{n} which is an approximation of $\hat{y}\left(t^{n}\right)$.
(a) Do we have $y_{n}=\hat{y}\left(t^{n}\right)$?
(b) i. Apply the explicit Euler scheme to ODE (13). Express y_{n+1} as a function of y_{n}.
ii. How many values do we need in order to initialize the sequence $\left(y_{n}\right)$?
iii. Write out the algorithm leading to the computation of the sequence $\left(y_{n}\right)$.
$i v$. Recall the order of this scheme.
(c) We are interesting in the multi-step scheme

$$
\begin{equation*}
z_{n+3}-z_{n+1}=\Delta t\left(\frac{7}{3} f\left(z_{n+2}\right)-\frac{2}{3} f\left(z_{n+1}\right)+\frac{1}{3} f\left(z_{n}\right)\right) . \tag{14}
\end{equation*}
$$

i. Prove the consistency of Scheme (14).
ii. Study its stability.
iii. Deduce that this scheme is convergent.
iv. Is this scheme explicit or implicit? Justify your answer.
v. Determine the order of Scheme (14).
vi. How many values do we need in order to initialize the sequence $\left(z_{n}\right)$? Explain how to compute these initiliazing values.
vii. Write out the algorithm leading to the computation of the sequence $\left(z_{n}\right)$.
viii. Which scheme would you recommend: Euler (Q. 3.(b)) or Scheme (14)?
ix. Apply Scheme (14) when $f(x)=1$. Compute the exact expression of z_{n} for all n.

Exercise 18 We focus in this exercise on the ordinary differential equation

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=-x_{1}(t)-x_{1}(t) x_{2}(t), \quad x_{1}(0)=\frac{1}{3} \tag{15}\\
x_{2}^{\prime}(t)=-\frac{x_{2}(t)}{x_{1}(t)}, \quad x_{2}(0)=\frac{2}{3}
\end{array}\right.
$$

We $\operatorname{set} F(x, y)=\binom{-x-x y}{-\frac{y}{x}}$ and $X(t)=\binom{x_{1}(t)}{x_{2}(t)}$.

1. Rewrite $O D E$ (15) by means of X and F.
2. Does there exist a solution to $O D E$ (15)?
3. Is it possible to provide an explicit expression of the solution?
4. Let $\Delta t>0$ be such that $\Delta t<\frac{1}{2}$. We propose the numerical scheme

$$
\left\{\begin{array}{l}
\frac{x_{1}^{n+1}-x_{1}^{n}}{\Delta t}=-x_{1}^{n}-x_{1}^{n} x_{2}^{n+1}, \quad x_{1}^{0}=\frac{1}{3} \tag{16}\\
\frac{x_{2}^{n+1}-x_{2}^{n}}{\Delta t}=-\frac{x_{2}^{n+1}}{x_{1}^{n}}, \quad x_{2}^{0}=\frac{2}{3} .
\end{array}\right.
$$

(a) Show by induction that the sequences $\left(x_{1}^{n}\right)$ and $\left(x_{2}^{n}\right)$ belong to $(0,1)$ and are monotone-decreasing.
(b) Deduce that they are convergent. Determine their limits.
(c) Is Scheme (16) explicit?
(d) Express x_{1}^{n+1} and x_{2}^{n+1} as functions of x_{1}^{n}, x_{2}^{n} and Δt. Deduce that this one-step scheme is consistant.

Exercise 19 We now study the pure advection equation

$$
\left\{\begin{array}{l}
\partial_{t} Y(t, x)+\alpha \partial_{x} Y(t, x)=0, \quad x \in(0,1) \tag{17}\\
Y(t, 0)=0 \\
Y(0, x)=Y_{0}(x)
\end{array}\right.
$$

with the same assumptions for α and Y_{0} as in the previous exercise.

1. Let Y_{1} and Y_{2} be two smooth solutions of PDE (17). Show that $Y_{1}=Y_{2}$ by using

$$
E(t)=\int_{0}^{1}\left|Y_{1}(t, x)-Y_{2}(t, x)\right|^{2} \mathrm{~d} x .
$$

2. Deduce that function \hat{Y} defined by

$$
\hat{Y}(t, x)= \begin{cases}Y_{0}(x-\alpha t), & \text { if } x-\alpha t \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

is the unique smooth solution of (17).
3. We now aim at studying numerical schemes simulating PDE (17). To do so, let us introduce $N_{x} \geq 2$ an integer and $\Delta t>0$ a real number. We then set

$$
\Delta x=\frac{1}{N_{x}-1}, x_{i}=(i-1) \Delta x, 1 \leq i \leq N_{x}, \quad \text { and } \quad t^{n}=(n-1) \Delta t, n \geq 1
$$

We propose the following schemes

$$
\begin{gather*}
\frac{Y_{i}^{n+1}-Y_{i}^{n}}{\Delta t}+\alpha \frac{Y_{i}^{n}-Y_{i-1}^{n}}{\Delta x}=0 \tag{18}\\
\frac{Y_{i}^{n+1}-Y_{i}^{n}}{\Delta t}+\alpha \frac{Y_{i}^{n+1}-Y_{i-1}^{n+1}}{\Delta x}=0 . \tag{19}
\end{gather*}
$$

(a) Upwind scheme (18): write out the algorithm corresponding to the computation of Y_{i}^{n} for all $i \in\left\{1, \ldots, N_{x}\right\}$ and $n \geq 1$.
(b) Upwind scheme (18): show that this scheme is consistant and using Exercise 20, derive a stability condition.
(c) Implicit scheme (19): write out the corresponding algorithm. Does it require the resolution of a linear system?

Exercise 20 Let us study the 1D advection-diffusion equation

$$
\left\{\begin{array}{l}
\partial_{t} Y(t, x)+\alpha \partial_{x} Y(t, x)-v \partial_{x x}^{2} Y(t, x)=0, \quad x \in(0,1) \tag{20}\\
Y(t, 0)=Y(t, 1)=0 \\
Y(0, x)=Y_{0}(x)
\end{array}\right.
$$

for some constant velocity field $\alpha>0$ and constant diffusion coefficient $v \neq 0$. The initial datum Y_{0} is assumed to be smooth.

1. Propose a discretization of (20) inspired by the previous implicit scheme. Does it require the resolution of a linear system? If so, what can you say about the matrix?
2. Let us set $Z(t, x)=Y(t, x) \exp \left[\frac{-\alpha}{4 v}(2 x-\alpha t)\right]$. Show that Z satisfies the following $P D E$

$$
\begin{equation*}
\partial_{t} Z-v \partial_{x x}^{2} Z=0 \tag{21}
\end{equation*}
$$

with suitable initial and boundary conditions. Do you think it is more relevant to discretize the equivalent equation (21)?

