Practical Work \#2

1 Root of a function

Let f be the function

$$
f(x)=x^{2} e^{-x}-1
$$

There exists a unique $\alpha \in \mathbb{R}$ such that $f(\alpha)=0$. Moreover, it is straightforward that $\alpha \in(-1,0)$. We assess in this section several methods to provide a "good" approximation of α.

1.1 Bisection

The bisection method relies on the intermediate value theorem which states that as f is continuous, if $f(x)<0$ and $f(y)>0$, then α lies between x and y. The sequence a_{n} which is expected to converge towards α is thus constructed like this:

```
Algorithm 1 Bisection method
    Data: \(a, b\) such that \(f(a)<0\) and \(f(b)>0\)
    \(a_{1} \leftarrow a, b_{1} \leftarrow b, c \leftarrow \frac{a+b}{2}\)
    \(n \leftarrow 1\)
    while \(f(c) \neq 0\) do
        if \(f\left(a_{n}\right) f(c)<0\) then
            \(a_{n+1} \leftarrow a_{n}\)
            \(b_{n+1} \leftarrow c\)
        else
            \(a_{n+1} \leftarrow c\)
            \(b_{n+1} \leftarrow b_{n}\)
        end if
        \(c \leftarrow \frac{a_{n+1}+b_{n+1}}{2}\)
        \(n \leftarrow n+1\)
    end while
```

The key point is the stopping criterion. We may never obtain $f(c)=0$ due to round off errors. Here are some possibilities depending on a user-tuned threshold $M>0$:

- Relative error: while $\left|a_{n+1}-a_{n}\right|>M$
- Absolute error: while $\left|a_{n}-\alpha\right|>M$ (requires the exact solution $\alpha \ldots$)
- Residual: while $|f(c)|>M$

In any case, there must be a cautious criterion including a maximal number of iterations for the case where the method may not converge and thus to prevent infinite loops.

1.2 Newton's method

This method reads

$$
a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}
$$

For the method to be well-posed, f^{\prime} must not vanish in the neighbourhood of α. As a consequence, the first term a_{0} which is chosen by the user must be close enough to the very solution of the equation.

1.3 Secant method

The Newton's method can be modified in order to avoid evaluating the derivative function. It results in the secant method

$$
a_{n+1}=a_{n}-f\left(a_{n}\right) \frac{a_{n}-a_{n-1}}{f\left(a_{n}\right)-f\left(a_{n-1}\right)} .
$$

The restriction is the same as the original method, i.e. that a_{0} and a_{1} must be different and close to α.

1.4 Directions

1. Implement the resolution of $f(x)=0$ by means of the three methods.
2. Set the accuracy threshold ε as well as the maximal number of iterations. Take relevant values for a_{0}, b_{0} (and potentially a_{1}). Compare the number of iterations for each method to reach the required accuracy.
3. Compute for each method the increment $e_{n}=\left|a_{n+1}-a_{n}\right|$. The method is said to be of order p if

$$
e_{n+1} \leq C e_{n}^{p}
$$

for some constant $C>0$. Determine the order of each method.

2 Iterative methods for linear systems

Let $A \in \mathscr{M}_{n}(\mathbb{R})$ be an invertible matrix. We introduce the following notations

$$
D=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & a_{n n}
\end{array}\right), \quad U=\left(\begin{array}{cccc}
0 & -a_{12} & \cdots & -a_{1 n} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & -a_{n-1, n} \\
0 & \cdots & \cdots & 0
\end{array}\right), \quad L=\left(\begin{array}{cccc}
0 & \cdots & \cdots & 0 \\
-a_{21} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
-a_{n, 1} & \cdots & -a_{n, n-1} & 0
\end{array}\right),
$$

such that $A=D-L-U$.

2.1 Settings

To solve the linear system $A x=b$ for a given $b \in \mathbb{R}^{n}$, we investigate two iterative strategies of the form

$$
x^{k+1}=M^{-1}\left(N x^{k}+b\right)
$$

with

- for the Jacobi method: $M=D, N=L+U$;
- for the SOR method: $M=\frac{1}{\omega} D-L, N=\frac{1-\omega}{\omega} D+U$.

2.2 Directions

We take

$$
A=\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right) .
$$

1. Choose a vector \bar{x}. Compute $b=A \bar{x}$.
2. Implement the two previous iterative methods with some relevant stopping criteria.
3. Is the SOR method convergent for any value of ω ?
4. In the case of convergence, plot the errors $e_{J}^{k}=\left\|x_{J}^{k}-\bar{x}\right\|$ and $e_{S O R}^{k}=\left\|x_{S O R}^{k}-\bar{x}\right\|$.
