Exercises \#2

Exercise 7 Give the solutions to the following ODEs:

$$
\hat{y}^{\prime}(t)=2 \hat{y}(t)+1 ; \quad \hat{y}^{\prime}(t)=\frac{t}{t^{2}+1} \hat{y}(t) ; \quad \hat{y}^{\prime}(t)=-(\tan t) \hat{y}(t)-1 ; \quad \hat{y}^{\prime}(t)=-\frac{\hat{y}(t)}{t}+\cos t .
$$

Exercise 8 Let Ch and Sh be the functions defined by

$$
\operatorname{Ch}(t)=\frac{e^{t}+e^{-t}}{2} \quad \text { and } \quad \operatorname{Sh}(t)=\frac{e^{t}-e^{-t}}{2}
$$

1. Compute the derivatives of Ch and Sh .
2. Give a particular solution y_{0} of the differential system

$$
\begin{equation*}
y^{\prime}(t)-2 t y(t)=\operatorname{Sh}(t)-2 t \operatorname{Ch}(t) . \tag{1}
\end{equation*}
$$

3. Characterize ODE (1).
4. Set $u=y-y_{0}$. Show that y is a solution to (1) together with $y(0)=0$ if and only if u satisfies

$$
\left\{\begin{array}{l}
u^{\prime}(t)-2 t u(t)=0 \\
u(0)=1
\end{array}\right.
$$

5. Solve (1) together with $y(0)=0$.

Exercise 9 1. Determine the solutions to the second-order $O D E$

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)=0 .
$$

2. We then focus on the $O D E$

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)=\cos t \tag{2}\\
y(0)=0 \\
y^{\prime}(0)=1
\end{array}\right.
$$

(a) Prove that there exists a unique solution to (2).
(b) What are the eigenvalues of the corresponding matrix?
(c) Determine C such that $y(t)=C(t) e^{t}$ satisfies (2).
(d) Conclude.

Exercise 10 Let us solve the $O D E$

$$
\hat{y}^{\prime}(t)=\frac{2}{e^{\hat{y}(t)}+e^{-\hat{y}(t)}}, \hat{y}(0)=1
$$

1. Prove there exists a unique solution over a certain interval J.
2. $\operatorname{Set} F(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$. Compute $F(\operatorname{Sh} t)$.
3. Give the expression of the solution according to the lecture notes.

Exercise 11 Solve the ODE

$$
t y^{\prime}(t) y(t)=y(t)^{2}-1
$$

You may find the equation satisfied by $z=y^{2}$.

Exercise 12 These equations model the evolution of an isolated predator-prey system (for instance rabbits and lynx):

$$
\begin{cases}x^{\prime}(t)=x(t)(3-y(t)), & x(0)=1 \tag{3}\\ y^{\prime}(t)=y(t)(x(t)-2), & y(0)=2\end{cases}
$$

1. Determine which variable corresponds to the number of preys.
2. Determine the only constant solution to (3).
3. Rewrite Eqs. (3) as $\mathbf{Y}^{\prime}(t)=\mathbf{F}(\mathbf{Y}(t))$, where $\mathbf{Y}=\binom{x}{y}$. Deduce that there exists a unique solution \mathbf{Y}.
4. Prove that x and y cannot vanish.
5. We set $H(x, y)=x-2 \ln x+y-3 \ln y$. H is called the Hamiltonian of the system. Show that for all $t \geq 0$, $H(x(t), y(t))=H(x(0), y(0))$.

Exercise 13 We get interested in a chemical experiment where a chemical species C is produced from A thanks to a catalyser B. The three reactions involved are

$$
\begin{array}{cr}
A \longrightarrow B & \text { (slow) } \\
B+B \longrightarrow B+C & \text { (very fast) } \\
B+C \longrightarrow A+B & \text { (fast) }
\end{array}
$$

The concentration of species $*$ is denoted by y_{*}. Their evolution is governed by the following ODEs:

$$
\left\{\begin{array}{l}
y_{A}^{\prime}(t)=-k_{1} y_{A}(t)+k_{3} y_{B}(t) y_{C}(t) \tag{4a}\\
y_{B}^{\prime}(t)=k_{1} y_{A}(t)-k_{3} y_{B}(t) y_{C}(t)-k_{2} y_{B}^{2}(t) \\
y_{C}^{\prime}(t)=k_{2} y_{B}^{2}(t)
\end{array}\right.
$$

supplemented with the initial conditions

$$
\begin{equation*}
y_{A}(0)=1, y_{B}(0)=0, y_{C}(0)=0 \tag{4d}
\end{equation*}
$$

The reaction constants are $k_{1}=0.04, k_{2}=3 \cdot 10^{7}$ and $k_{3}=10^{4}$.

1. Prove that there exists a unique solution to (4) on a certain interval J.
2. Prove that $y_{A}(t)+y_{B}(t)+y_{C}(t)=1$ for all $t \in J$.
3. Determine the constant solutions to (4a-4b-4c).
4. Show that $y_{*}(t) \geq 0$ for all $t \in J$ and $* \in\{A, B, C\}$.
5. Deduce that $J=\mathbb{R}$.
