Exercises \#1

Exercise 1 For $n \in \mathbb{Z}_{+}$, set $I_{n}=\int_{0}^{+\infty} t^{n} e^{-t} \mathrm{~d} t$ and $J_{n}=\int_{0}^{+\infty} t^{n} e^{-t^{2}} \mathrm{~d} t$.

1. By means of an integration by parts, derive a relation between I_{n} and I_{n-1}. Compute I_{0} and then I_{n} for all n.
2. Same questions for J_{n} knowing that $J_{0}=\frac{\sqrt{\pi}}{2}$.

Exercise 2 Let $\left(u_{n}\right)$ be the sequence defined by

$$
u_{0}=0, \forall n \in \mathbb{Z}_{+}, u_{n+1}=\frac{u_{n}+2}{4-u_{n}}
$$

Set $v_{n}=\frac{u_{n}-1}{u_{n}-2}$ and $f(x)=\frac{x+2}{4-x}$.

1. Solve the equations $f(x)=1$ and $f(x)=2$.
2. Prove that if $u_{n}<1$, then $u_{n+1}<1$. Deduce that the sequence $\left(u_{n}\right)$ is well defined.
3. Show that $\left(v_{n}\right)$ is well defined and geometric. Deduce the expression of v_{n} with respect to n.
4. Derive the expression of u_{n} with respect to n. What is the limit of $\left(u_{n}\right)$?

Exercise 3 Determine the expression of u_{n} solution of

$$
\left\{\begin{array}{l}
u_{0}=0, u_{1}=1 \\
u_{n+1}=-u_{n}-\frac{5}{36} u_{n-1}, n \geq 1
\end{array}\right.
$$

Exercise 4 Write out the Cholesky algorithm.
Exercise 5 Let A be the matrix

$$
A_{\alpha}=\left(\begin{array}{ccc}
\alpha & -1 & 0 \\
-1 & \alpha & -1 \\
0 & -1 & \alpha
\end{array}\right)
$$

parametrized by $\alpha \in \mathbb{R}$.

1. Compute the eigenvalues of A_{α} and some corresponding eigenvectors.
2. For which values of α the matrix A_{α} is invertible?
3. For which values of α the matrix A_{α} admits a Cholesky decomposition? For those values, compute the decomposition.
4. We assume $\alpha \neq 0$. Apply the Jacobi method which is the iterative method with $M=\operatorname{diag}\left(A_{\alpha}\right)$ and $N=\operatorname{diag}\left(A_{\alpha}\right)-A_{\alpha}$. For which values of α the method is convergent?
5. Solve explicitly $A_{\alpha} x=b$ for some $b \in \mathbb{R}^{n}$ and α inferred at Question 2.

Exercise 6 Let A be the matrix

$$
A=\left(\begin{array}{ccccc}
3 & -2 & 0 & \cdots & 0 \\
-1 & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & -2 \\
0 & \cdots & 0 & -1 & 3
\end{array}\right) .
$$

Find out the $L U$ decomposition of A. Hint: show first that L and U are bidiagonal. Then set $u_{i}=U_{i i}$, $v_{i}=U_{i, i+1}, \ell_{i}=L_{i+1, i}$ and $w_{i}=\frac{u_{i}-1}{u_{i}-2}$. Prove that $\left(w_{i}\right)$ is geometric.

