Exercises #1

Exercise 1 For $n \in \mathbb{Z}_+$, set $I_n = \int_0^{+\infty} t^n e^{-t} dt$ and $J_n = \int_0^{+\infty} t^n e^{-t^2} dt$.

- 1. By means of an integration by parts, derive a relation between I_n and I_{n-1} . Compute I_0 and then I_n for all n.
- 2. Same questions for J_n knowing that $J_0 = \frac{\sqrt{\pi}}{2}$.

Exercise 2 Let (u_n) be the sequence defined by

$$u_0 = 0, \forall n \in \mathbb{Z}_+, u_{n+1} = \frac{u_n + 2}{4 - u_n}.$$

Set $v_n = \frac{u_n - 1}{u_n - 2}$ and $f(x) = \frac{x + 2}{4 - x}$.

- 1. Solve the equations f(x) = 1 and f(x) = 2.
- 2. Prove that if $u_n < 1$, then $u_{n+1} < 1$. Deduce that the sequence (u_n) is well defined.
- 3. Show that (v_n) is well defined and geometric. Deduce the expression of v_n with respect to n.
- 4. Derive the expression of u_n with respect to n. What is the limit of (u_n) ?

Exercise 3 Determine the expression of u_n solution of

$$\begin{cases} u_0 = 0, \ u_1 = 1, \\ u_{n+1} = -u_n - \frac{5}{36}u_{n-1}, \ n \ge 1. \end{cases}$$

Exercise 4 Write out the Cholesky algorithm.

Exercise 5 Let A be the matrix

$$A_{\alpha} = \begin{pmatrix} \alpha & -1 & 0\\ -1 & \alpha & -1\\ 0 & -1 & \alpha \end{pmatrix}$$

parametrized by $\alpha \in \mathbb{R}$.

- 1. Compute the eigenvalues of A_{α} and some corresponding eigenvectors.
- 2. For which values of α the matrix A_{α} is invertible?
- 3. For which values of α the matrix A_{α} admits a Cholesky decomposition? For those values, compute the decomposition.
- 4. We assume $\alpha \neq 0$. Apply the Jacobi method which is the iterative method with $M = diag(A_{\alpha})$ and $N = diag(A_{\alpha}) A_{\alpha}$. For which values of α the method is convergent?
- 5. Solve explicitly $A_{\alpha}x = b$ for some $b \in \mathbb{R}^n$ and α inferred at Question 2.

Exercise 6 Let A be the matrix

$$A = \begin{pmatrix} 3 & -2 & 0 & \cdots & 0 \\ -1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -2 \\ 0 & \cdots & 0 & -1 & 3 \end{pmatrix}.$$

Find out the LU decomposition of A. Hint: show first that *L* and *U* are bidiagonal. Then set $u_i = U_{ii}$, $v_i = U_{i,i+1}$, $\ell_i = L_{i+1,i}$ and $w_i = \frac{u_i - 1}{u_i - 2}$. Prove that (w_i) is geometric.