A SIMPLIFIED MODEL FOR A LOW MACH NUMBER DIPHASIC FLOW

Yohan PENEL^{1,2}, Stéphane DELLACHERIE¹, Olivier LAFITTE²

¹DEN/DANS/DM2S/SFME/LETR, CEA Saclay, France

²LAGA, Institut Galilée, University of Paris 13, France

ICPDE 2010 - FOR THE 60TH BIRTHDAY OF M. CHIPOT Poitiers – February, 20th, 2010

INTRODUCTION

GOAL Modeling of the evolution of bubbles in a nuclear reactor at the scale of bubbles (DNS)

Y. Penel (CEA

The ABV Model

2/26

INTRODUCTION

Y. Penel (CEA

The ABV Model

2 / 26

OUTLINE

Derivation of the model

- 2 Theoretical results
- Interface computations

3/26

Y. Penel (CEA

PARTIAL OUTLINE

Derivation of the model

- 2) Theoretical results
- Interface computations

Y. Penel (CEA

COMPRESSIBLE DIPHASIC NAVIER-STOKES SYSTEM

Starting point

BLE KES	$\left(\partial_t(\rho Y_1) + \nabla \cdot (\rho Y_1 \mathbf{u}) = 0\right),$
ASIC ESSII STO	$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 ,$
DIPHASIC COMPRESSIBLE NAVIER-STOKES	$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla P + \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{g},$
CO CO	$\int \partial_t(\rho E) + \nabla \cdot (\rho \mathbf{u} E) = -\nabla \cdot (P \mathbf{u}) + \nabla \cdot (\kappa \nabla T) + \nabla \cdot (\sigma \mathbf{u}) + \rho \mathbf{g} \cdot \mathbf{u},$

together with transmission and boundary conditions.

Nomenclature

- Y₁ : mass fraction of Fluid 1
- T : temperature
- P : pressure
- u : global velocity
- E : total energy

- ρ : density
- g : gravity field
- σ : Cauchy stress tensor
- κ : thermal conductivity
- $\theta = (Y_1, T, P)$

MODELING BUBBLES

Initial condition

$$Y_1(t=0,x) = Y^0(x) = \begin{cases} 1, & \text{if } x \in \Omega_1(0), \\ 0, & \text{if } x \in \Omega_2(0). \end{cases}$$

- Diphasic flow = non-miscible bi-fluid flow = Y₁ not regular
- Discontinuity of Y_1 = interface of the bubble

•
$$\Omega \subset \mathbb{R}^d$$
, $d \in \{1, 2, 3\}$: open, bounded, smooth

The resolution of this equation with that initial condition amounts to determining for a domain $\Omega_1(t)$.

HYPOTHESES AND TOOLS

Physics	MATHEMATICS
Bounded domain (reactor)	$\Omega = [-1,1]^d, d \in \{2,3\}$
No void	ho > 0
Linear elasticity	Linearized Cauchy tensor
Common physical properties for both fluids	Single nondimensioned system
Low Mach Number	Asymptotic expansion w.r.t. $\mathscr{M}_* \ll 1$
Existence of an entropy	$-T\mathrm{d}s = \mathrm{d}\varepsilon + P\mathrm{d}\tau$

Based on earlier Majda's & Embid's works on combustion ('84).

Y. Penel (CEA

DLMN System

Diphasic Low Mach Number System: At order 0 in the asymptotic expansion, the system reads:

$$\begin{cases} \partial_t Y_1 + \mathbf{u} \cdot \nabla Y_1 = 0, \\ \nabla \cdot \mathbf{u} = G_{\theta}, \\ \rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) = -\nabla \Pi + 2\nabla \cdot [\mu D(\mathbf{u})] + \rho \mathbf{g}, \\ \rho c_{\rho}(\partial_t T + \mathbf{u} \cdot \nabla T) = \alpha T P'(t) + \nabla \cdot (\kappa \nabla T), \\ P'(t) = H_{\theta}(t), \end{cases}$$

where *P* is the thermodynamic pressure, Π the dynamic pressure and:

$$G_{\theta}(t, \mathbf{x}) := -\frac{D_t \rho}{\rho} = -\frac{1}{\Gamma} \frac{P'(t)}{P(t)} + \frac{\beta \nabla \cdot (\kappa \nabla T)}{P(t)},$$
$$H_{\theta}(t) := \frac{\int_{\Omega} \beta(\theta) \nabla \cdot [\kappa(\theta) \nabla T] \, \mathrm{d}\mathbf{x}}{\int_{\Omega} \frac{1}{\Gamma(\theta)} \, \mathrm{d}\mathbf{x}}.$$

Y. Penel (CEA)

DLMN System

Diphasic Low Mach Number System: At order 0 in the asymptotic expansion, the system reads:

$$\begin{cases} \partial_t Y_1 + \mathbf{u} \cdot \nabla Y_1 = 0, \\ \nabla \cdot \mathbf{u} = \mathbf{G}_{\theta}, & \stackrel{\neq 0}{\longrightarrow} & \text{compressibility, elliptic contribution} \\ \rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) = -\nabla \Pi + 2\nabla \cdot [\mu D(\mathbf{u})] + \rho \mathbf{g}, \\ \rho c_{\rho}(\partial_t T + \mathbf{u} \cdot \nabla T) = \alpha T P'(t) + \nabla \cdot (\kappa \nabla T), \\ P'(t) = H_{\theta}(t), \end{cases}$$

where *P* is the thermodynamic pressure, Π the dynamic pressure and:

$$G_{\theta}(t, \mathbf{x}) := -\frac{D_t \rho}{\rho} = -\frac{1}{\Gamma} \frac{P'(t)}{P(t)} + \frac{\beta \nabla \cdot (\kappa \nabla T)}{P(t)},$$
$$H_{\theta}(t) := \frac{\int_{\Omega} \beta(\theta) \nabla \cdot [\kappa(\theta) \nabla T] \, \mathrm{d}\mathbf{x}}{\int_{\Omega} \frac{1}{\Gamma(\theta)} \, \mathrm{d}\mathbf{x}}.$$

Y. Penel (CEA)

DERIVED SYSTEMS FOR PRELIMARY STUDIES

Hodge Decomposition: $\mathbf{u} = \nabla \phi + \mathbf{w}$ with $\nabla \cdot \mathbf{w} = 0$ and boundary conditions.

Potential DLMN System

 $\mathbf{w} \rightarrow 0$

$$\begin{cases} \partial_t Y_1 + \nabla \phi \cdot \nabla Y_1 = 0, \\ \Delta \phi = G_{\theta}, \\ \rho c_{\rho}(\partial_t T + \nabla \phi \cdot \nabla T) = \alpha T P'(t) + \nabla \cdot (\kappa \nabla T), \\ P'(t) = H_{\theta}(t). \end{cases}$$

Abstract Bubble Vibration Model

$$\begin{cases} \partial_t Y_1 + \nabla \phi \cdot \nabla Y_1 = 0, \\ \Delta \phi(t, \mathbf{x}) = \psi(t) \left[Y_1(t, \mathbf{x}) - \frac{1}{|\Omega|} \int_{\Omega} Y_1(t, \mathbf{y}) \, \mathrm{d} \mathbf{y} \right] \end{cases}$$

 $G_{\theta} \rightarrow G_{Y}$

PARTIAL OUTLINE

Derivation of the model

2 Theoretical results

- General study
- 1D

Interface computations

GLOBAL ISSUES

System of Partial Differential Equations

- Properties of solutions
- Existence of solutions depending on the regularity of Y⁰
 - Strong solutions when $Y^0 \in \mathscr{H}^s$, s large enough
 - Weak solutions when $Y^0 \in L^{\infty}$
- Uniqueness
- Numerical simulations

Main tool: Energy estimates.

Set:

•
$$\mathbb{Y} = \{ Y \in L^{\infty}(\Omega) : Y(x) \in [0,1] \text{ for almost every } x \in \Omega \}$$

$$\begin{cases} \partial_t Y + \nabla \phi \cdot \nabla Y = 0, \\ Y(0, \cdot) = Y^0, \\ \Delta \phi(t, \mathbf{x}) = \psi(t) \left(Y(t, \mathbf{x}) - |\Omega|^{-1} \int_{\Omega} Y(t, \mathbf{x}') \, \mathrm{d} \mathbf{x}' \right), \\ \nabla \phi \cdot \mathbf{n}_{|\partial \Omega} = 0. \end{cases}$$

Kashing Delike

12/26

Restrictions on the potential: ϕ_0 is prescribed by Y^0 . In addition, we impose $\int_{\Omega} \phi(t, \mathbf{x}) d\mathbf{x} = 0$

Restrictions on the potential: ϕ_0 is prescribed by Y^0 . In addition, we impose $\int_{\Omega} \phi(t, \mathbf{x}) d\mathbf{x} = 0$

There is **at most** one weak solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$

 $\Delta \phi(t, \mathbf{x}) = \psi(t) \left(Y(t, \mathbf{x}) - |\Omega|^{-1} \int_{\Omega} Y(t, \mathbf{x}') \, \mathrm{d}\mathbf{x}' \right),$ $\nabla \phi \cdot \mathbf{n}_{|\partial\Omega} = 0.$

Institute Delitie

Restrictions on the potential: ϕ_0 is prescribed by Y^0 . In addition, we impose $\int_{\Omega} \phi(t, \mathbf{x}) d\mathbf{x} = 0$

There is **at most** one weak solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$

If $Y^0 \in \mathbb{Y}$, then every bounded solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$ is in \mathbb{Y} (maximum principle)

 $7 \boldsymbol{\phi} \cdot \mathbf{n}_{|\partial\Omega} = 0.$

Restrictions on the potential: ϕ_0 is prescribed by Y^0 . In addition, we impose $\int_{\Omega} \phi(t, \mathbf{x}) d\mathbf{x} = 0$

There is **at most** one weak solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$

If $Y^0 \in \mathbb{Y}$, then every bounded solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$ is in \mathbb{Y} (maximum principle)

If Ω is symmetric and Y^0 is even, then every solution belonging to $\mathscr{Z}_{\mathscr{T}}(\Omega)$ is **even**

THEOREM (LAFITTE & DELLACHERIE, '05; PENEL, '10)

Assume $Y^0 \in \mathscr{H}^{s}(\Omega)$ with $s > \lfloor d/2 \rfloor + 1$ and $\psi \in \mathscr{C}^0([0, +\infty))$. Then there exists $\mathscr{T}_0 > 0$ depending on $\|Y^0\|_s$ and ψ such that the ABV model has a unique classical solution $Y_1 \in \mathscr{W}_{s,\mathscr{T}}(\Omega)$ for some \mathscr{T} at least greater than \mathscr{T}_0 .

$\Delta \phi(t, \mathbf{x}) = \psi(t) \left(Y(t, \mathbf{x}) - |\Omega|^{-1} \int_{\Omega} Y(t, \mathbf{x}') \, \mathrm{d}\mathbf{x}' \right),$ $\nabla \phi \cdot \mathbf{n}_{|\partial\Omega} = 0.$

THEOREM (LAFITTE & DELLACHERIE, '05; PENEL, '10)

Assume $Y^0 \in \mathscr{H}^{s}(\Omega)$ with $s > \lfloor d/2 \rfloor + 1$ and $\psi \in \mathscr{C}^0([0, +\infty))$. Then there exists $\mathscr{T}_0 > 0$ depending on $\|Y^0\|_s$ and ψ such that the ABV model has a unique classical solution $Y_1 \in \mathscr{W}_{s,\mathscr{T}}(\Omega)$ for some \mathscr{T} at least greater than \mathscr{T}_0 .

LEMMA

Suppose that there exists a weak solution $Y_1(t, \mathbf{x}) = \mathbf{1}_{\Omega_1(t)}(\mathbf{x})$ where $\Omega_1(t) \subset \Omega$ and $\psi \in \mathscr{C}^0(0, +\infty)$, then the volume of the bubble is given by:

$$(\Omega_1(t)) = |\Omega| \frac{|\Omega_1(0)| \exp \int_0^t \psi(\tau) \mathrm{d}\tau}{|\Omega_2(0)| + |\Omega_1(0)| \exp \int_0^t \psi(\tau) \mathrm{d}\tau}$$

PRELIMINARY RESULTS

Energy estimates for the transport equation: $\partial_t \mathbf{Y} + \mathbf{u} \cdot \nabla \mathbf{Y} = f$

$$\sup_{t\in[0,\mathcal{T}]} \|Y(t,\cdot)\|_r \leq e^{\chi_r(\mathcal{T})} \left(\|Y^0\|_r + \int_0^{\mathcal{T}} e^{-\chi_r(t)} \|f(t,\cdot)\|_r \,\mathrm{d}t \right),$$

with
$$\chi_r(t) = C_{adv,0}(r,d,\Omega) \int_0^t \|\nabla \mathbf{u}(\tau,\cdot)\|_{\max(s_0,r-1)} \,\mathrm{d}\tau.$$

2 Elliptic regularity results for the Poisson equation

- Classical functional inequalities (Moser, interpolation, Gronwall, ...)

Y. Penel (CEA

Iterative scheme:

•
$$\Delta \phi^{(k)} = \psi(t) \left(Y^{(k)}(t, \mathbf{x}) - \frac{1}{|\Omega|} \int_{\Omega} Y^{(k)}(t, \mathbf{x}') d\mathbf{x}' \right), \nabla \phi^{(k)} \cdot \mathbf{n}_{|\partial\Omega} = 0$$

• $\partial_t Y^{(k+1)} + \nabla \phi^{(k)} \cdot \nabla Y^{(k+1)} = 0, Y^{(k+1)}(0, \cdot) = Y^0$

Objectives:

- to ensure the convergence of $(Y^{(k)})$
- It o derive estimates in order to avoid a progressive loss of regularity as $k o +\infty$
- to check that the limit is a solution of the ABV model

Proof of convergence:

- O Boundedness in ℋ_{s,𝔅}(Ω) which induces weak-★ convergence to ϔ ∈ ℋ_{s,𝔅}(Ω) via the Arzela-Ascoli theorem and compactness arguments
- Strong convergence to $Y \in \mathcal{W}_{0,\mathcal{T}}(\Omega)$
- Finally, $Y = \tilde{Y} \in \mathscr{W}_{s,\mathscr{T}}(\Omega)$ and $Y^{(k)} \xrightarrow{\mathscr{W}_{s',\mathscr{T}}(\Omega)} Y$, for any s' < s

2.1. General study

SKETCH OF PROOF (2)

Proof of convergence:

O Boundedness in ℋ_{s,𝔅}(Ω) which induces weak-★ convergence to ϔ ∈ ℋ_{s,𝔅}(Ω) via the Arzela-Ascoli theorem and compactness arguments

- Strong convergence to $Y \in \mathscr{W}_{0,\mathscr{T}}(\Omega)$
- Finally, $Y = \tilde{Y} \in \mathscr{W}_{s,\mathscr{T}}(\Omega)$ and $Y^{(k)} \xrightarrow{\mathscr{W}_{s',\mathscr{T}}(\Omega)} Y$, for any s' < s

Using energy estimates, we get:

$$\sup_{t\in[0,\mathcal{T}]} \|Y^{(k+1)}(t,\cdot)\|_s \leq \|Y^0\|_s \exp\left[C_{abv} \sup_{t\in[0,\mathcal{T}]} \|Y^{(k)}(t,\cdot)\|_s \int_0^{\mathcal{T}} |\psi(t)| \,\mathrm{d}t\right].$$

Since the sequence $u_{n+1} = u_0 e^{u_n}$ converges iff $u_0 \le e^{-1}$, we show that:

$$\forall \ k \in \mathbb{N}, \ \sup_{t \in [0,\mathscr{T}]} \| Y^{(k)}(t, \cdot) \|_{s} \le e \| Y^{0} \|_{s}$$

under the hypothesis $\int_0^{\mathscr{T}} |\psi(t)| dt \leq \frac{1}{e \cdot C_{abv} \cdot \|Y^0\|_s}$.

Proof of convergence:

- O Boundedness in ℋ_{s,𝔅}(Ω) which induces weak-★ convergence to ϔ ∈ ℋ_{s,𝔅}(Ω) via the Arzela-Ascoli theorem and compactness arguments
- Strong convergence to $Y \in \mathscr{W}_{0,\mathscr{T}}(\Omega)$
- Finally, $Y = \tilde{Y} \in \mathscr{W}_{s,\mathscr{T}}(\Omega)$ and $Y^{(k)} \xrightarrow{\mathscr{W}_{s',\mathscr{T}}(\Omega)} Y$, for any s' < s

Proof of convergence:

- **O** Boundedness in $\mathscr{W}_{s,\mathscr{T}}(\Omega)$ which induces weak-* convergence to $\widetilde{Y} \in \mathscr{W}_{s,\mathscr{T}}(\Omega)$ via the Arzela-Ascoli theorem and compactness arguments
- **2** Strong convergence to $Y \in \mathcal{W}_{0,\mathcal{T}}(\Omega)$
- Finally, $Y = \tilde{Y} \in \mathscr{W}_{s,\mathscr{T}}(\Omega)$ and $Y^{(k)} \xrightarrow{\mathscr{W}_{s',\mathscr{T}}(\Omega)} Y$, for any s' < s

On the other hand, we prove that:

$$e^{-\chi(t)} \left\| \left(Y^{(k+1)} - Y^{(k)} \right)(t, \cdot) \right\|_{0} \leq C_{abv} \int_{0}^{t} e^{-\chi(\tau)} \left\| \left(Y^{(k)} - Y^{(k-1)} \right)(\tau, \cdot) \right\|_{0} \mathrm{d}\tau$$

Iterating the process, we show that the series $\sum \|Y^{(k+1)} - Y^{(k)}\|_{0} \propto$ satisfies the Cauchy criterion in $\mathscr{W}_{0,\mathscr{T}}(\Omega)$ which is complete. Hence the strong convergence of $Y^{(k)}$ in $\mathcal{W}_{0,\mathcal{T}}(\Omega).$

Proof of convergence:

- O Boundedness in ℋ_{s,𝔅}(Ω) which induces weak-★ convergence to Ỹ ∈ ℋ_{s,𝔅}(Ω) via the Arzela-Ascoli theorem and compactness arguments
- Strong convergence to $Y \in \mathscr{W}_{0,\mathscr{T}}(\Omega)$
- Finally, $Y = \tilde{Y} \in \mathscr{W}_{s,\mathscr{T}}(\Omega)$ and $Y^{(k)} \xrightarrow{\mathscr{W}_{s',\mathscr{T}}(\Omega)} Y$, for any s' < s

2.1. General study

SKETCH OF PROOF (2)

Proof of convergence:

- O Boundedness in ℋ_{s,𝔅}(Ω) which induces weak-★ convergence to ϔ ∈ ℋ_{s,𝔅}(Ω) via the Arzela-Ascoli theorem and compactness arguments
- Strong convergence to $Y \in \mathscr{W}_{0,\mathscr{T}}(\Omega)$
- $\textbf{ Sinally, } \textbf{Y} = \tilde{\textbf{Y}} \in \mathscr{W}_{\boldsymbol{s},\mathscr{T}}(\Omega) \text{ and } \textbf{Y}^{(k)} \xrightarrow{\mathscr{W}_{\boldsymbol{s}',\mathscr{T}}(\Omega)} \textbf{Y}, \text{ for any } \boldsymbol{s}' < \boldsymbol{s}$

We rewrite the iterative system under an intergal form and we conclude applying the dominated convergence theorem to show that the limit $(Y_1, \nabla \phi)$ is actually a solution.

TIME INTERVAL (1)

We proved the existence of a solution under the assumption:

$$e \cdot C_{abv} \cdot \|Y^0\|_s \int_0^{\mathscr{T}} |\psi(t)| \, \mathrm{d}t \leq 1.$$

- We should bear in mind that this condition is sufficient and specific to the method used in the course of the proof: *I* is not necessarily optimal
- Siven an initial datum Y⁰, we have a global existence for all $\psi \in L^1(0, +\infty)$ such that $\|\psi\|_{L^1} \leq \frac{1}{e \cdot C_{abv} \cdot \|Y^0\|_s}$
- Given a pulse ψ and a time \mathscr{T} , there is a local existence for all initial data such that $\|Y^0\|_s \leq \frac{1}{e \cdot C_{abv} \cdot \|\psi\|_{L^1(0,\mathscr{T})}}$

• If $\psi \equiv 0$, the solution is trivially $Y \equiv Y^0$ and $\mathscr{T} = +\infty$

TIME INTERVAL (2) – STILL IN PROGRESS

Continuation principle: if $Y_1(\mathcal{T}, \cdot) \in \mathcal{H}^s$, we can apply the local existence theorem to the system:

$$\begin{aligned} \partial_t Z + \nabla \varphi \cdot \nabla Z &= 0, \\ Z(0, \cdot) &= Y_1(\mathscr{T}, \cdot), \\ \Delta \varphi(t, \mathbf{x}) &= \tilde{\psi}(t) \left(Z(t, \mathbf{x}) - \frac{1}{|\Omega|} \int_{\Omega} Z(t, \mathbf{x}') \, \mathrm{d} \mathbf{x}' \right), \\ \nabla \varphi \cdot \mathbf{n}_{|\partial\Omega} &= 0, \end{aligned}$$

with $\tilde{\psi}(t) = \psi(\mathscr{T} + t)$. Thus, we can extend the solution Y_1 to a new time interval $[0, \mathscr{T} + \mathscr{T}_Z]$.

Let us denote \mathscr{T}_k the time of existence at Step *k* in the continuation process. If the sequence is globally defined, there are two possibilities: either the series $\sum \mathscr{T}_k$ converges (and there is a local existence theorem), or it diverges (and we obtain a global solution).

REMARKS

In one space dimension, the Poisson equation is trivially solved and the $\mathsf{A}_\mathsf{B}\mathsf{V}$ Model reads:

$$\partial_t Y(t,x) + \psi(t) \left(\int_{-L}^x Y(t,y) \, \mathrm{d}y - \frac{x+L}{2L} \int_{-L}^L Y(t,y) \, \mathrm{d}y \right) \partial_x Y(t,x) = 0.$$

 \implies continuity of the velocity field due to the embedding $\mathscr{H}^1 \subset \mathscr{C}^0$ in 1D. Specificities of the 1D-case:

- A single nonlinear integro-differential equation
- Explicit solution in the irregular case
- Finite propagation speed

Open problems: does the regularized solution converge to the explicit irregular solution?

EXPLICIT CALCULATIONS

Explicit irregular solution in 1D

$$Y_1(t,x) = \mathbf{1}_{[-\beta(t),\beta(t)]}(x) \text{ with } \qquad \beta(t) = \frac{\beta_0}{\left(1 - \frac{\beta_0}{L}\right) \exp \Psi(t) + \frac{\beta_0}{L}}.$$

/. Penel (CEA)

The ABV Model

19/26

PARTIAL OUTLINE

Derivation of the model

2) Theoretical results

3 Interface computations

20/26

Y. Penel (CEA

DISCRETIZATION

Mismatch between the discrete and continuous levels

۰	۰	۰	۰	•	•	•	۰	۰	۰	•	•	•	•	•	•	•	•	•	۰	۰	۰	۰	۰	•
•	0	۰	0	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	•	•	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	•
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	0	•	0	•	۰	۰	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	9	•	۰	۰	•	•	6	•	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	10	۰	۰	۰	•	۰	•	۰	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	۰	۰	•	۰	۰	•	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	۰
•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	•	۰	۰	۰	۰	۰	•/	•	۰	۰	•
•	۰	۰	•	۰	۰	0	~	~	۰	۰	۰	۰	۰	6	•	۰	۰	۰	۰	0	۰	۰	۰	•
•	۰	۰	•	۰	P	۰	۰	۰	R	۰	۰	۰	۰	۰	0	þ	•	2	0	•	۰	۰	۰	0
•	۰	۰	۰	۰	•	۰	۰	۰	•)	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	0
۰	۰	۰	۰	۰	•	۰	۰	۰	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•
۰	۰	۰	۰	۰	d	۰	۰	۰	ø	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	•
۰	•	۰	۰	۰	۰	6	•	0	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	•
۰	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	۰
•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	•
۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	۰
•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰
•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰

DISCRETIZATION

Mismatch between the discrete and continuous levels

• •	• • • • • • • • • • • • • • • • • • • • • • • • • • • •
• •	• • • • • • • • • • • •
• •	• •
• •	•••
0 0	• •
• • • • • • • • • • • • • • • • • • •	• •
	• •
• • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • • •	• •
	• •
	• •
• • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • •	• •
· · · · · · · · · · · · · · · · · · ·	• •
• • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • • •	• •
• • • • • • • • • • • • • • • • • • • •	• •
	• •

TEST ABV

ABV model:

$$\begin{cases} \partial_t Y_1 + \nabla \phi \cdot \nabla Y_1 = 0, \\ Y_1(0, \mathbf{x}) = Y^0(\mathbf{x}), \\ \Delta \phi = Y_1 - \frac{1}{4} \iint_{[-1,1]^2} Y_1(t, \mathbf{y}) \, \mathrm{d}\mathbf{y}, \\ \nabla \phi \cdot \mathbf{n}_{|\partial\Omega} = 0. \end{cases}$$

 $\psi \equiv$ 1: constant growth.

The initial datum Y^0 consists of two disjoint circles of different radii.

TEST ABV

 100×100 grid with a refinement rate equal to 6

Y. Penel (CEA

CONCLUSION

Done

- Existence and Uniqueness Theorem with an approximation of the time interval
- Study of the 1D-case
- Derivation of a numerical scheme to preserve interfaces

To do

- Approximating the time of existence for the DLMN system
- Enrichment with physical content
- Theoretical studies with irregular initial data

THANK YOU FOR YOUR ATTENTION