A Simplified Model for a Low Mach Number Diphasic Flow

Yohan Penel ${ }^{1,2}$, Stéphane DelLacherie ${ }^{1}$, Olivier LAFItTE ${ }^{2}$

${ }^{1}$ DEN/DANS/DM2S/SFME/LETR, CEA Saclay, France
${ }^{2}$ LAGA, Institut Galilée, University of Paris 13, France

ICPDE 2010 - FOR the 60th Birthday of M. Chipot Poitiers - February, 20th, 2010

INTRODUCTION

```
GOAL
Modeling of the evolution of
bubbles in a nuclear reactor at
the scale of bubbles (DNS)
```


INTRODUCTION

OUTLINE

(1) Derivation of the model

2 Theoretical results
(3) Interface computations

Partial OUtLine

(1) Derivation of the model
(2) Theoretical results
(3) Interface computations
\square

Compressible Diphasic Navier-Stokes System

Starting point

together with transmission and boundary conditions.

Nomenclature

- Y_{1} : mass fraction of Fluid 1
- T : temperature
- P : pressure
- u : global velocity
- E : total energy
- ρ : density
- g : gravity field
- σ : Cauchy stress tensor
- κ : thermal conductivity
- $\theta=\left(Y_{1}, T, P\right)$

Modeling bubbles

Initial condition

$$
Y_{1}(t=0, x)=Y^{0}(x)= \begin{cases}1, & \text { if } x \in \Omega_{1}(0) \\ 0, & \text { if } x \in \Omega_{2}(0)\end{cases}
$$

- Diphasic flow = non-miscible bi-fluid flow = Y_{1} not regular
- Discontinuity of $Y_{1}=$ interface of the bubble
- $\Omega \subset \mathbb{R}^{d}, d \in\{1,2,3\}$: open, bounded, smooth

The resolution of this equation with that initial condition amounts to determining for a domain $\Omega_{1}(t)$.

Hypotheses and Tools

Physics	Mathematics
Bounded domain (reactor)	$\Omega=[-1,1]^{d}, d \in\{2,3\}$
No void	$\rho>0$
Linear elasticity	Linearized Cauchy tensor
Common physical properties for both fluids	Single nondimensioned system
Low Mach Number	Asymptotic expansion w.r.t. $\mathscr{M}_{*} \ll 1$
Existence of an entropy	$-T \mathrm{~d} s=\mathrm{d} \varepsilon+P \mathrm{~d} \tau$

Based on earlier Majda's \& Embid's works on combustion ('84).

DLMN SYSTEM

Diphasic Low Mach Number System: At order 0 in the asymptotic expansion, the system reads:

$$
\left\{\begin{array}{l}
\partial_{t} Y_{1}+\mathbf{u} \cdot \nabla Y_{1}=0 \\
\nabla \cdot \mathbf{u}=G_{\theta} \\
\rho\left(\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)=-\nabla \Pi+2 \nabla \cdot[\mu D(\mathbf{u})]+\rho \mathbf{g} \\
\rho c_{p}\left(\partial_{t} T+\mathbf{u} \cdot \nabla T\right)=\alpha T P^{\prime}(t)+\nabla \cdot(\kappa \nabla T) \\
P^{\prime}(t)=H_{\theta}(t)
\end{array}\right.
$$

where P is the thermodynamic pressure, Π the dynamic pressure and:

$$
\begin{aligned}
& G_{\theta}(t, x):=-\frac{D_{t} \rho}{\rho}=-\frac{1}{\Gamma} \frac{P^{\prime}(t)}{P(t)}+\frac{\beta \nabla \cdot(\kappa \nabla T)}{P(t)} \\
& H_{\theta}(t):=\frac{\int_{\Omega} \beta(\theta) \nabla \cdot[\kappa(\theta) \nabla T] \mathrm{d} \mathbf{x}}{\int_{\Omega} \frac{1}{\Gamma(\theta)} \mathrm{d} \mathbf{x}}
\end{aligned}
$$

DLMN SYSTEM

Diphasic Low Mach Number System: At order 0 in the asymptotic expansion, the system reads:

$$
\left\{\begin{array}{l}
\partial_{t} Y_{1}+\mathbf{u} \cdot \nabla Y_{1}=0 \\
\nabla \cdot \mathbf{u}=G_{\theta}, \quad \stackrel{\neq 0}{\Longrightarrow} \quad \text { compressibility, elliptic contribution } \\
\rho\left(\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)=-\nabla \Pi+2 \nabla \cdot[\mu D(\mathbf{u})]+\rho \mathbf{g} \\
\rho c_{p}\left(\partial_{t} T+\mathbf{u} \cdot \nabla T\right)=\alpha T P^{\prime}(t)+\nabla \cdot(\kappa \nabla T) \\
P^{\prime}(t)=H_{\theta}(t),
\end{array}\right.
$$

where P is the thermodynamic pressure, Π the dynamic pressure and:

$$
\begin{aligned}
& G_{\theta}(t, x):=-\frac{D_{t} \rho}{\rho}=-\frac{1}{\Gamma} \frac{P^{\prime}(t)}{P(t)}+\frac{\beta \nabla \cdot(\kappa \nabla T)}{P(t)}, \\
& H_{\theta}(t):=\frac{\int_{\Omega} \beta(\theta) \nabla \cdot[\kappa(\theta) \nabla T] \mathrm{d} \mathbf{x}}{\int_{\Omega} \frac{1}{\Gamma(\theta)} \mathrm{d} \mathbf{x}} .
\end{aligned}
$$

DERIVED SYSTEMS FOR PRELIMARY STUDIES

Hodge Decomposition: $\mathbf{u}=\nabla \phi+\mathbf{w}$ with $\nabla \cdot \mathbf{w}=0$ and boundary conditions.

Potential DLMN System

$$
\left\{\begin{array}{l}
\partial_{t} Y_{1}+\nabla \phi \cdot \nabla Y_{1}=0 \\
\Delta \phi=G_{\theta} \\
\rho c_{p}\left(\partial_{t} T+\nabla \phi \cdot \nabla T\right)=\alpha T P^{\prime}(t)+\nabla \cdot(\kappa \nabla T) \\
P^{\prime}(t)=H_{\theta}(t)
\end{array}\right.
$$

Abstract Bubble Vibration Model

$$
G_{\theta} \rightarrow G_{Y}
$$

$$
\left\{\begin{array}{l}
\partial_{t} Y_{1}+\nabla \phi \cdot \nabla Y_{1}=0 \\
\Delta \phi(t, \mathbf{x})=\psi(t)\left[Y_{1}(t, \mathbf{x})-\frac{1}{|\Omega|} \int_{\Omega} Y_{1}(t, \mathbf{y}) \mathrm{d} \mathbf{y}\right]
\end{array}\right.
$$

Partial Outline

(1) Derivation of the model

(2) Theoretical results

- General study
- 1D

(3) Interface computations

\square

Global issues

System of Partial Differential Equations

- Properties of solutions
(2) Existence of solutions depending on the regularity of Y^{0}
- Strong solutions when $Y^{0} \in \mathscr{H}^{s}$, s large enough
- Weak solutions when $Y^{0} \in L^{\infty}$
- Uniqueness
- Numerical simulations

Main tool: Energy estimates.
Set:
(1) $\mathbb{Y}=\left\{Y \in L^{\infty}(\Omega): Y(x) \in[0,1]\right.$ for almost every $\left.x \in \Omega\right\}$
(3) $\mathscr{W}_{s, \mathscr{T}}(\Omega)=\mathscr{C}^{0}\left([0, \mathscr{T}], L^{2}(\Omega)\right) \cap L^{\infty}\left([0, \mathscr{T}], \mathscr{H}^{s}(\Omega)\right)$
(0) $\mathscr{Z}_{\mathscr{T}}(\Omega)=L^{\infty}\left([0, \mathscr{T}], W^{1, \infty}(\Omega)\right)$

Algebraic properties

$$
\left\{\begin{array}{l}
\partial_{t} Y+\nabla \phi \cdot \nabla Y=0 \\
\quad Y(0, \cdot)=Y^{0} \\
\Delta \phi(t, \mathbf{x})=\psi(t)\left(Y(t, \mathbf{x})-|\Omega|^{-1} \int_{\Omega} Y\left(t, \mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}\right), \\
\nabla \phi \cdot \mathbf{n}_{\mid \partial \Omega}=0
\end{array}\right.
$$

Algebraic properties

> Restrictions on the potential: ϕ_{0} is prescribed by Y^{0}. In addition, we impose $\int_{\Omega} \phi(t, \mathbf{x}) \mathrm{d} \mathbf{x}=0$

Algebraic properties

Restrictions on the potential: ϕ_{0} is prescribed by Y^{0}. In
addition, we impose $\int_{\Omega} \phi(t, \mathbf{x}) \mathrm{d} \mathbf{x}=0$

There is at most one weak solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$

Algebraic properties

Restrictions on the potential: ϕ_{0} is prescribed by Y^{0}. In
addition, we impose $\int_{\Omega} \phi(t, \mathbf{x}) \mathrm{d} \mathbf{x}=0$

There is at most one weak solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$

If $Y^{0} \in \mathbb{Y}$, then every bounded solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$ is in \mathbb{Y} (maximum principle)

Algebraic properties

Restrictions on the potential: ϕ_{0} is prescribed by Y^{0}. In addition, we impose $\int_{\Omega} \phi(t, \mathbf{x}) \mathrm{d} \mathbf{x}=0$

There is at most one weak solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$

If $Y^{0} \in \mathbb{Y}$, then every bounded solution in the class $\mathscr{Z}_{\mathscr{T}}(\Omega)$ is in \mathbb{Y} (maximum principle)

If Ω is symmetric and Y^{0} is even, then every solution belonging to $\mathscr{Z}_{\mathscr{T}}(\Omega)$ is even

Algebraic properties

Theorem (Lafitte \& Dellacherie, '05; Penel, '10)
Assume $Y^{0} \in \mathscr{H}^{s}(\Omega)$ with $s>\lfloor d / 2\rfloor+1$ and $\psi \in \mathscr{C}^{0}([0,+\infty))$. Then there exists $\mathscr{T}_{0}>0$ depending on $\left\|Y^{0}\right\|_{s}$ and ψ such that the Abv model has a unique classical solution $Y_{1} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ for some \mathscr{T} at least greater than \mathscr{T}_{0}.

Algebraic properties

Theorem (Lafitte \& Dellacherie, '05; Penel, '10)
Assume $Y^{0} \in \mathscr{H}^{s}(\Omega)$ with $s>\lfloor d / 2\rfloor+1$ and $\psi \in \mathscr{C}^{0}([0,+\infty))$. Then there exists $\mathscr{T}_{0}>0$ depending on $\left\|Y^{0}\right\|_{s}$ and ψ such that the Abv model has a unique classical solution $Y_{1} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ for some \mathscr{T} at least greater than \mathscr{T}_{0}.

LEMMA

Suppose that there exists a weak solution $Y_{1}(t, \mathbf{x})=\mathbf{1}_{\Omega_{1}(t)}(\mathbf{x})$ where $\Omega_{1}(t) \subset \Omega$ and $\psi \in \mathscr{C}^{0}(0,+\infty)$, then the volume of the bubble is given by:

$$
\left|\Omega_{1}(t)\right|=|\Omega| \frac{\left|\Omega_{1}(0)\right| \exp \int_{0}^{t} \psi(\tau) \mathrm{d} \tau}{\left|\Omega_{2}(0)\right|+\left|\Omega_{1}(0)\right| \exp \int_{0}^{t} \psi(\tau) \mathrm{d} \tau} .
$$

Preliminary results

(1) Energy estimates for the transport equation: $\partial_{t} Y+\mathbf{u} \cdot \nabla Y=f$

$$
\sup _{t \in[0, \mathscr{T}]}\|Y(t, \cdot)\|_{r} \leq e^{\chi_{r}(\mathscr{T})}\left(\left\|Y^{0}\right\|_{r}+\int_{0}^{\mathscr{T}} e^{-\chi_{r}(t)}\|f(t, \cdot)\|_{r} \mathrm{~d} t\right)
$$

with $\chi_{r}(t)=C_{a d v, 0}(r, d, \Omega) \int_{0}^{t}\|\nabla \mathbf{u}(\tau, \cdot)\|_{\max \left(s_{0}, r-1\right)} \mathrm{d} \tau$.
(2) Elliptic regularity results for the Poisson equation
(0. Embeddings $\mathscr{W}_{s, \mathscr{T}}(\Omega) \subset \mathscr{C}^{0}\left([0, \mathscr{T}], \mathscr{H}^{s^{\prime}}\right) \subset \mathscr{C}^{0}([0, \mathscr{T}] \times \bar{\Omega})$ for any $s^{\prime}<s$

- Classical functional inequalities (Moser, interpolation, Gronwall, ...)

SKETCH OF PROOF (1)

Iterative scheme:
($\Delta \phi^{(k)}=\psi(t)\left(Y^{(k)}(t, \mathbf{x})-\frac{1}{|\Omega|} \int_{\Omega} Y^{(k)}\left(t, \mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}\right), \nabla \phi^{(k)} \cdot \mathbf{n}_{\mid \partial \Omega}=0$
(2) $\partial_{t} Y^{(k+1)}+\nabla \phi^{(k)} \cdot \nabla Y^{(k+1)}=0, Y^{(k+1)}(0, \cdot)=Y^{0}$

Objectives:
© to ensure the convergence of $\left(Y^{(k)}\right)$
(2) to derive estimates in order to avoid a progressive loss of regularity as $k \rightarrow+\infty$
(3) to check that the limit is a solution of the ABV model

SKETCH OF PROOF (2)

Proof of convergence:
(1) Boundedness in $\mathscr{W}_{s, \mathscr{T}}(\Omega)$ which induces weak-^ convergence to $\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ via the Arzela-Ascoli theorem and compactness arguments
(3) Strong convergence to $Y \in \mathscr{W}_{0, \mathscr{T}}(\Omega)$
(3) Finally, $Y=\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ and $Y^{(k)} \xrightarrow{s^{\prime}, \mathscr{T}(\Omega)} Y$, for any $s^{\prime}<s$

SKETCH OF PROOF (2)

Proof of convergence:
(1) Boundedness in $\mathscr{W}_{s, \mathscr{T}}(\Omega)$ which induces weak-ぇ convergence to $\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ via the Arzela-Ascoli theorem and compactness arguments
(3) Strong convergence to $Y \in \mathscr{W}_{0, \mathscr{T}}(\Omega)$
(3) Finally, $Y=\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ and $Y(k) \xrightarrow{s^{\prime}, \mathscr{T}(\Omega)} Y$, for any $s^{\prime}<s$

Using energy estimates, we get:

$$
\sup _{t \in[0, \mathscr{T}]}\left\|Y^{(k+1)}(t, \cdot)\right\|_{s} \leq\left\|Y^{0}\right\|_{s} \exp \left[C_{a b v} \sup _{t \in[0, \mathscr{T}]}\left\|Y^{(k)}(t, \cdot)\right\|_{s} \int_{0}^{\mathscr{T}}|\psi(t)| \mathrm{d} t\right] .
$$

Since the sequence $u_{n+1}=u_{0} e^{u_{n}}$ converges iff $u_{0} \leq e^{-1}$, we show that:

$$
\forall k \in \mathbb{N}, \sup _{t \in[0, \mathscr{T}]}\left\|Y^{(k)}(t, \cdot)\right\|_{s} \leq e\left\|Y^{0}\right\|_{s}
$$

under the hypothesis $\int_{0}^{\mathscr{T}}|\psi(t)| \mathrm{d} t \leq \frac{1}{e \cdot C_{a b v} \cdot\left\|Y^{0}\right\|_{s}}$.

SKETCH OF PROOF (2)

Proof of convergence:
(1) Boundedness in $\mathscr{W}_{s, \mathscr{T}}(\Omega)$ which induces weak-^ convergence to $\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ via the Arzela-Ascoli theorem and compactness arguments
(2) Strong convergence to $Y \in \mathscr{W}_{0, \mathscr{T}}(\Omega)$
(3) Finally, $Y=\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ and $Y(k) \xrightarrow{s^{\prime} \mathscr{T}(\Omega)} Y$, for any $s^{\prime}<s$

SKETCH OF PROOF (2)

Proof of convergence:
(1) Boundedness in $\mathscr{W}_{s, \mathscr{T}}(\Omega)$ which induces weak-ぇ convergence to $\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ via the Arzela-Ascoli theorem and compactness arguments
(2) Strong convergence to $Y \in \mathscr{W}_{0, \mathscr{T}}(\Omega)$
(3) Finally, $Y=\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ and Y

On the other hand, we prove that:

$$
e^{-\chi(t)}\left\|\left(Y^{(k+1)}-Y^{(k)}\right)(t, \cdot)\right\|_{0} \leq C_{a b v} \int_{0}^{t} e^{-\chi(\tau)}\left\|\left(Y^{(k)}-Y^{(k-1)}\right)(\tau, \cdot)\right\|_{0} \mathrm{~d} \tau
$$

Iterating the process, we show that the series $\sum\left\|Y^{(k+1)}-Y^{(k)}\right\|_{0, \mathscr{T}}$ satisfies the Cauchy criterion in $\mathscr{W}_{0, \mathscr{T}}(\Omega)$ which is complete. Hence the strong convergence of $Y^{(k)}$ in $\mathscr{W}_{0, \mathscr{T}}(\Omega)$.

SKETCH OF PROOF (2)

Proof of convergence:
(1) Boundedness in $\mathscr{W}_{s, \mathscr{T}}(\Omega)$ which induces weak-^ convergence to $\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ via the Arzela-Ascoli theorem and compactness arguments
(2) Strong convergence to $Y \in \mathscr{W}_{0, \mathscr{T}}(\Omega)$
(3) Finally, $Y=\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ and $Y^{(k)} \xrightarrow{\mathscr{W}_{s^{\prime}, \mathscr{T}}(\Omega)} Y$, for any $s^{\prime}<s$

SKETCH OF PROOF (2)

Proof of convergence:
(1) Boundedness in $\mathscr{W}_{s, \mathscr{T}}(\Omega)$ which induces weak-ぇ convergence to $\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ via the Arzela-Ascoli theorem and compactness arguments
(2) Strong convergence to $Y \in \mathscr{W}_{0, \mathscr{T}}(\Omega)$
(3) Finally, $Y=\tilde{Y} \in \mathscr{W}_{s, \mathscr{T}}(\Omega)$ and $Y^{(k)} \xrightarrow{\mathscr{W}_{s^{\prime}, \mathscr{T}}(\Omega)} Y$, for any $s^{\prime}<s$

We rewrite the iterative system under an intergal form and we conclude applying the dominated convergence theorem to show that the limit $\left(Y_{1}, \nabla \phi\right)$ is actually a solution.

Time interval (1)

We proved the existence of a solution under the assumption:

$$
e \cdot C_{a b v} \cdot\left\|Y^{0}\right\|_{s} \int_{0}^{\mathscr{T}}|\psi(t)| \mathrm{d} t \leq 1 .
$$

- We should bear in mind that this condition is sufficient and specific to the method used in the course of the proof: \mathscr{T} is not necessarily optimal
(2) Given an initial datum Y^{0}, we have a global existence for all $\psi \in L^{1}(0,+\infty)$ such that $\|\psi\|_{L^{1}} \leq \frac{1}{e \cdot C_{a b v} \cdot\left\|Y^{0}\right\|_{s}}$
- Given a pulse ψ and a time \mathscr{T}, there is a local existence for all initial data such that $\left\|Y^{0}\right\|_{s} \leq \frac{1}{e \cdot C_{a b v} \cdot\|\psi\|_{L^{1}(0, \mathscr{T})}}$
- If $\psi \equiv 0$, the solution is trivially $Y \equiv Y^{0}$ and $\mathscr{T}=+\infty$

Time interval (2) - Still in progress

Continuation principle: if $Y_{1}(\mathscr{T}, \cdot) \in \mathscr{H}^{s}$, we can apply the local existence theorem to the system:

$$
\left\{\begin{array}{l}
\partial_{t} Z+\nabla \varphi \cdot \nabla Z=0 \\
\quad Z(0, \cdot)=Y_{1}(\mathscr{T}, \cdot) \\
\Delta \varphi(t, \mathbf{x})=\tilde{\psi}(t)\left(Z(t, \mathbf{x})-\frac{1}{|\Omega|} \int_{\Omega} Z\left(t, \mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}\right) \\
\quad \nabla \varphi \cdot \mathbf{n}_{\mid \partial \Omega}=0
\end{array}\right.
$$

with $\tilde{\psi}(t)=\psi(\mathscr{T}+t)$. Thus, we can extend the solution Y_{1} to a new time interval $\left[0, \mathscr{T}+\mathscr{T}_{Z}\right]$.

Let us denote \mathscr{T}_{k} the time of existence at Step k in the continuation process. If the sequence is globally defined, there are two possibilities: either the series $\sum \mathscr{T}_{k}$ converges (and there is a local existence theorem), or it diverges (and we obtain a global solution).
\square

Remarks

In one space dimension, the Poisson equation is trivially solved and the Abv Model reads:

$$
\partial_{t} Y(t, x)+\psi(t)\left(\int_{-L}^{x} Y(t, y) \mathrm{d} y-\frac{x+L}{2 L} \int_{-L}^{L} Y(t, y) \mathrm{d} y\right) \partial_{x} Y(t, x)=0 .
$$

\Longrightarrow continuity of the velocity field due to the embedding $\mathscr{H}^{1} \subset \mathscr{C}^{0}$ in 1 D .
Specificities of the 1D-case:
(1) A single nonlinear integro-differential equation
(2) Explicit solution in the irregular case
(Finite propagation speed
Open problems: does the regularized solution converge to the explicit irregular solution?

EXPLICIT CALCULATIONS

Explicit irregular solution in 1D

$$
Y_{1}(t, x)=\mathbf{1}_{[-\beta(t), \beta(t)]}(x) \text { with } \quad \beta(t)=\frac{\beta_{0}}{\left(1-\frac{\beta_{0}}{L}\right) \exp \psi(t)+\frac{\beta_{0}}{L}} .
$$

Partial OUtLine

(1) Derivation of the model

2 Theoretical results

3 Interface computations
\square

DISCRETIZATION

Mismatch between the discrete and continuous levels

-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc	-	-	-	-	\bigcirc	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-					\bigcirc	-	-	-	-	-
\bigcirc	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	d	-	-	-	-	-	-	-	-	-	-
\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-	-
\bigcirc	-	-	-	-	-	\bullet	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	\bullet
\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\cdots	-	-	-	-
\bullet	-	-	-	-	-	\bigcirc		\bigcirc	-	-	-	-	-	21	\bullet	-	-	-	-	6	-	-	-	-
\bullet	-	-	-	-	8	\bigcirc	-	-	9	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	e	\bigcirc		O	-	\bigcirc	\bigcirc	\bigcirc	-
\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc	-	-	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bullet	-	-	-	-	6	\bigcirc	-	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bullet	-	-	-	-	-			O	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
\bigcirc	\bullet	-	-	-	\bigcirc	\bigcirc	-	\bullet	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bullet	-	-	-	-	-	\bigcirc	-	\bigcirc	-
\bigcirc	-	-	-	-	\bullet	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc	-	-	-	-	\bullet	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bullet	-	-	-	-	\bullet	\bullet	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc	-	-	-	-	\bigcirc	\bullet	-	-	\bigcirc	-	\bigcirc	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-
\bigcirc	-	-	-	-	\bigcirc	\bullet	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-
\bigcirc	-	-	-	-	\bigcirc	\bullet	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	\bullet	\bullet	\bigcirc

DISCRETIZATION

Mismatch between the discrete and continuous levels

-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		\bigcirc	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	。		-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-		$\stackrel{\square}{\circ}$	-	-	-	-	-		$\sqrt{7}$	-	-	-	-	\circ	10	-	-	-	-
-	-	\bigcirc	-	-	$\not \subset$	-	-	-	1	-	-	-	-			\bigcirc	-	-	2	-	。	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	5	-	-	-	2	-	-	-	-			-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-		0	T-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
\bullet	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	-			\bigcirc	-	\bigcirc	-	-	-	-	\bullet	-	-
\bigcirc	-	-	-	-	-	\bigcirc	-	$\stackrel{\circ}{\circ}$	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
\bullet	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
\bullet	-	\bigcirc	-	-	-	-	-	-	-	\bullet	-	-	-			-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-

Test ABV

ABV model:

$$
\left\{\begin{array}{l}
\partial_{t} Y_{1}+\nabla \phi \cdot \nabla Y_{1}=0, \\
\quad Y_{1}(0, \mathbf{x})=Y^{0}(\mathbf{x}), \\
\Delta \phi=Y_{1}-\frac{1}{4} \iint_{[-1,1]^{2}} Y_{1}(t, \mathbf{y}) \mathrm{d} \mathbf{y}, \\
\nabla \phi \cdot \mathbf{n}_{\mid \partial \Omega}=0 .
\end{array}\right.
$$

$\psi \equiv 1$: constant growth.
The initial datum Y^{0} consists of two disjoint circles of different radii.

Test ABV

100×100 grid with a refinement rate equal to 6

Conclusion

Done

- Existence and Uniqueness Theorem with an approximation of the time interval
- Study of the 1D-case
- Derivation of a numerical scheme to preserve interfaces

To do

- Approximating the time of existence for the DLMN system
- Enrichment with physical content
- Theoretical studies with irregular initial data
Y. Penel (CEA)

THANK YOU FOR YOUR ATTENTION

