
A SIMPLIFIED MODEL

FOR A LOW MACH NUMBER DIPHASIC FLOW
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INTRODUCTION

Modeling of the evolution of
bubbles in a nuclear reactor at
the scale of bubbles (DNS)

GOAL

Navier-Stokes equations for
a diphasic compressible im-
miscible flow

Mach Number supposed to
be small (still compressible
flow but without acoustic
wave effects)

Diphasic Low Mach Number
system (DLMN)

Simplification but keeping a
similar mathematical struc-
ture

Abstract Bubble Vibration
model (ABV)

Theoretical study Numerical simulations
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COMPRESSIBLE DIPHASIC NAVIER-STOKES SYSTEM

Starting point
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∂t (ρY1) + ∇ · (ρY1u) = 0 ,

∂t ρ + ∇ · (ρu) = 0 ,

∂t (ρu) + ∇ · (ρu⊗u) =−∇P + ∇ ·σ + ρg ,

∂t (ρE) + ∇ · (ρuE) =−∇ · (Pu) + ∇ · (κ∇T ) + ∇ · (σu) + ρg ·u ,

together with transmission and boundary conditions.

Nomenclature

• Y1 : mass fraction of Fluid 1

• T : temperature

• P : pressure

• u : global velocity

• E : total energy

• ρ : density

• g : gravity field

• σ : Cauchy stress tensor

• κ : thermal conductivity

• θ = (Y1,T ,P)
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MODELING BUBBLES

Initial condition Y1(t = 0,x) = Y 0(x) =

{
1, if x ∈ Ω1(0),

0, if x ∈ Ω2(0).

Ω

Y 0 = 1

Y 0 = 0

Ω1(0)

Ω2(0)

Diphasic flow = non-miscible bi-fluid flow =
Y1 not regular

Discontinuity of Y1 = interface of the bubble

Ω⊂ Rd , d ∈ {1,2,3}: open, bounded,
smooth

The resolution of this equation with that initial condition amounts to determining for a
domain Ω1(t).
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HYPOTHESES AND TOOLS

PHYSICS MATHEMATICS

Bounded domain (reactor) Ω = [−1,1]d , d ∈ {2,3}

No void ρ > 0

Linear elasticity Linearized Cauchy tensor

Common physical properties for both fluids Single nondimensioned system

Low Mach Number Asymptotic expansion w.r.t. M∗� 1

Existence of an entropy −T ds = dε + Pdτ

Based on earlier Majda’s & Embid’s works on combustion (’84).
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DLMN SYSTEM

Diphasic Low Mach Number System: At order 0 in the asymptotic expansion, the
system reads:

∂t Y1 + u ·∇Y1 = 0 ,

∇ ·u = Gθ ,

ρ(∂t u + (u ·∇)u) =−∇Π + 2∇ · [µD(u)] + ρg ,

ρcp(∂t T + u ·∇T ) = αTP ′(t) + ∇ · (κ∇T ) ,

P ′(t) = Hθ (t),

where P is the thermodynamic pressure, Π the dynamic pressure and:

Gθ (t,x) :=−Dt ρ

ρ
=−1

Γ

P ′(t)
P(t)

+
β∇ · (κ∇T )

P(t)
,

Hθ (t) :=

∫
Ω

β (θ)∇ ·
[
κ(θ)∇T

]
dx∫

Ω

1
Γ(θ)

dx
.
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6=0
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ρcp(∂t T + u ·∇T ) = αTP ′(t) + ∇ · (κ∇T ) ,

P ′(t) = Hθ (t),

where P is the thermodynamic pressure, Π the dynamic pressure and:

Gθ (t,x) :=−Dt ρ

ρ
=−1

Γ

P ′(t)
P(t)

+
β∇ · (κ∇T )

P(t)
,

Hθ (t) :=

∫
Ω

β (θ)∇ ·
[
κ(θ)∇T

]
dx∫

Ω

1
Γ(θ)

dx
.

Y. Penel (CEA) The ABV Model

8 / 26



1. DLMN 2. Theoretical results 3. Interface computations

DERIVED SYSTEMS FOR PRELIMARY STUDIES

Hodge Decomposition: u = ∇φ + w with ∇ ·w = 0 and boundary conditions.

Potential DLMN System w→ 0
∂t Y1 + ∇φ ·∇Y1 = 0 ,

∆φ = Gθ ,

ρcp(∂t T + ∇φ ·∇T ) = αTP ′(t) + ∇ · (κ∇T ) ,

P ′(t) = Hθ (t).

Abstract Bubble Vibration Model Gθ → GY
∂t Y1 + ∇φ ·∇Y1 = 0 ,

∆φ(t,x) = ψ(t)

[
Y1(t,x)− 1

|Ω|

∫
Ω

Y1(t,y) dy
]
.

Y. Penel (CEA) The ABV Model

9 / 26



1. DLMN 2. Theoretical results 3. Interface computations

PARTIAL OUTLINE

1 Derivation of the model

2 Theoretical results
General study
1D

3 Interface computations

Y. Penel (CEA) The ABV Model

10 / 26



1. DLMN 2. Theoretical results 3. Interface computations 2.1. General study

GLOBAL ISSUES

System of Partial Differential Equations

1 Properties of solutions

2 Existence of solutions depending on the regularity of Y 0

Strong solutions when Y 0 ∈H s , s large enough
Weak solutions when Y 0 ∈ L∞

3 Uniqueness

4 Numerical simulations

Main tool: Energy estimates.

Set:
1 Y = {Y ∈ L∞(Ω) : Y (x) ∈ [0,1] for almost every x ∈ Ω}
2 Ws,T (Ω) = C 0

(
[0,T ],L2(Ω)

)
∩L∞

(
[0,T ],H s(Ω)

)
3 ZT (Ω) = L∞

(
[0,T ],W 1,∞(Ω)

)
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ALGEBRAIC PROPERTIES



∂tY + ∇φ ·∇Y = 0,

Y (0, ·) = Y 0,

∆φ(t,x) = ψ(t)

(
Y (t,x)−|Ω|−1

∫
Ω

Y (t,x′) dx′
)
,

∇φ ·n|∂ Ω = 0.
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ALGEBRAIC PROPERTIES

Restrictions on the potential: φ0 is prescribed by Y 0. In

addition, we impose
∫

Ω
φ(t,x) dx = 0

There is at most one weak solution in the class ZT (Ω)

If Y 0 ∈ Y, then every bounded solution in the class
ZT (Ω) is in Y (maximum principle)

If Ω is symmetric and Y 0 is even, then every solution be-
longing to ZT (Ω) is even
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ALGEBRAIC PROPERTIES

THEOREM (LAFITTE & DELLACHERIE, ’05; PENEL, ’10)

Assume Y 0 ∈ H s(Ω) with s > bd/2c+ 1 and ψ ∈ C 0
(
[0,+∞)

)
.

Then there exists T0 > 0 depending on ‖Y 0‖s and ψ such that the
ABV model has a unique classical solution Y1 ∈Ws,T (Ω) for some
T at least greater than T0.
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ALGEBRAIC PROPERTIES

THEOREM (LAFITTE & DELLACHERIE, ’05; PENEL, ’10)

Assume Y 0 ∈ H s(Ω) with s > bd/2c+ 1 and ψ ∈ C 0
(
[0,+∞)

)
.

Then there exists T0 > 0 depending on ‖Y 0‖s and ψ such that the
ABV model has a unique classical solution Y1 ∈Ws,T (Ω) for some
T at least greater than T0.

LEMMA

Suppose that there exists a weak solution Y1(t,x) = 1Ω1(t)(x)

where Ω1(t)⊂Ω and ψ ∈C 0(0,+∞), then the volume of the bubble
is given by:

|Ω1(t)|= |Ω|
|Ω1(0)|exp

∫ t

0
ψ(τ)dτ

|Ω2(0)|+ |Ω1(0)|exp
∫ t

0
ψ(τ)dτ

.
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PRELIMINARY RESULTS

1 Energy estimates for the transport equation: ∂t Y + u ·∇Y = f

sup
t∈[0,T ]

‖Y (t, ·)‖r ≤ eχr (T )

(∥∥Y 0
∥∥

r +
∫ T

0
e−χr (t)‖f (t, ·)‖r dt

)
,

with χr (t) = Cadv ,0(r ,d ,Ω)
∫ t

0
‖∇u(τ, ·)‖max(s0,r−1) dτ .

2 Elliptic regularity results for the Poisson equation

3 Embeddings Ws,T (Ω)⊂ C 0
(
[0,T ],H s′

)
⊂ C 0

(
[0,T ]×Ω

)
for any s′ < s

4 Classical functional inequalities (Moser, interpolation, Gronwall, . . . )
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SKETCH OF PROOF (1)

Iterative scheme:

1 ∆φ (k) = ψ(t)

(
Y (k)(t,x)− 1

|Ω|

∫
Ω

Y (k)(t,x′) dx′
)
, ∇φ

(k) ·n|∂ Ω = 0

2 ∂t Y (k+1) + ∇φ (k) ·∇Y (k+1) = 0, Y (k+1)(0, ·) = Y 0

Objectives:
1 to ensure the convergence of (Y (k))

2 to derive estimates in order to avoid a progressive loss of regularity as k →+∞

3 to check that the limit is a solution of the ABV model
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SKETCH OF PROOF (2)

Proof of convergence:
1 Boundedness in Ws,T (Ω) which induces weak-? convergence to Ỹ ∈Ws,T (Ω)

via the Arzela-Ascoli theorem and compactness arguments
2 Strong convergence to Y ∈W0,T (Ω)

3 Finally, Y = Ỹ ∈Ws,T (Ω) and Y (k)
Ws′,T (Ω)
−−−−−−→ Y , for any s′ < s

We rewrite the iterative system under an intergal form and we conclude applying the
dominated convergence theorem to show that the limit (Y1,∇φ) is actually a solution.
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2 Strong convergence to Y ∈W0,T (Ω)

3 Finally, Y = Ỹ ∈Ws,T (Ω) and Y (k)
Ws′,T (Ω)
−−−−−−→ Y , for any s′ < s

Using energy estimates, we get:

sup
t∈[0,T ]

‖Y (k+1)(t, ·)‖s ≤ ‖Y
0‖s exp

[
Cabv sup

t∈[0,T ]
‖Y (k)(t, ·)‖s

∫ T

0
|ψ(t)|dt

]
.

Since the sequence un+1 = u0eun converges iff u0 ≤ e−1, we show that:

∀ k ∈ N, sup
t∈[0,T ]

‖Y (k)(t, ·)‖s ≤ e‖Y 0‖s

under the hypothesis
∫ T

0
|ψ(t)|dt ≤ 1

e ·Cabv · ‖Y 0‖s
.

We rewrite the iterative system under an intergal form and we conclude applying the
dominated convergence theorem to show that the limit (Y1,∇φ) is actually a solution.
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Proof of convergence:
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2 Strong convergence to Y ∈W0,T (Ω)

3 Finally, Y = Ỹ ∈Ws,T (Ω) and Y (k)
Ws′,T (Ω)
−−−−−−→ Y , for any s′ < s

On the other hand, we prove that:

e−χ(t)
∥∥∥(Y (k+1)−Y (k)

)
(t, ·)

∥∥∥
0
≤ Cabv

∫ t

0
e−χ(τ)

∥∥∥(Y (k)−Y (k−1)
)

(τ, ·)
∥∥∥

0
dτ

Iterating the process, we show that the series ∑

∥∥Y (k+1)−Y (k)
∥∥

0,T satisfies the Cauchy

criterion in W0,T (Ω) which is complete. Hence the strong convergence of Y (k) in
W0,T (Ω).

We rewrite the iterative system under an intergal form and we conclude applying the
dominated convergence theorem to show that the limit (Y1,∇φ) is actually a solution.
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3 Finally, Y = Ỹ ∈Ws,T (Ω) and Y (k)
Ws′,T (Ω)
−−−−−−→ Y , for any s′ < s

We rewrite the iterative system under an intergal form and we conclude applying the
dominated convergence theorem to show that the limit (Y1,∇φ) is actually a solution.

Y. Penel (CEA) The ABV Model

15 / 26



1. DLMN 2. Theoretical results 3. Interface computations 2.1. General study

SKETCH OF PROOF (2)

Proof of convergence:
1 Boundedness in Ws,T (Ω) which induces weak-? convergence to Ỹ ∈Ws,T (Ω)
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TIME INTERVAL (1)

We proved the existence of a solution under the assumption:

e ·Cabv · ‖Y 0‖s

∫ T

0
|ψ(t)|dt ≤ 1.

1 We should bear in mind that this condition is sufficient and specific to the method
used in the course of the proof: T is not necessarily optimal

2 Given an initial datum Y 0, we have a global existence for all ψ ∈ L1(0,+∞) such

that ‖ψ‖L1 ≤
1

e ·Cabv · ‖Y 0‖s

3 Given a pulse ψ and a time T , there is a local existence for all initial data such

that ‖Y 0‖s ≤
1

e ·Cabv · ‖ψ‖L1(0,T )

4 If ψ ≡ 0, the solution is trivially Y ≡ Y 0 and T = +∞

Y. Penel (CEA) The ABV Model
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TIME INTERVAL (2) – STILL IN PROGRESS

Continuation principle: if Y1(T , ·) ∈H s, we can apply the local existence theorem to
the system: 

∂t Z + ∇ϕ ·∇Z = 0,

Z (0, ·) = Y1(T , ·),

∆ϕ(t,x) = ψ̃(t)

(
Z (t,x)− 1

|Ω|

∫
Ω

Z (t,x′) dx′
)
,

∇ϕ ·n|∂ Ω = 0,

with ψ̃(t) = ψ(T + t). Thus, we can extend the solution Y1 to a new time interval
[0,T +TZ ].

Let us denote Tk the time of existence at Step k in the continuation process. If the
sequence is globally defined, there are two possibilities: either the series ∑Tk con-
verges (and there is a local existence theorem), or it diverges (and we obtain a global
solution).
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REMARKS

In one space dimension, the Poisson equation is trivially solved and the ABV Model
reads:

∂t Y (t,x) + ψ(t)

(∫ x

−L
Y (t,y) dy− x + L

2L

∫ L

−L
Y (t,y) dy

)
∂x Y (t,x) = 0.

=⇒ continuity of the velocity field due to the embedding H 1 ⊂ C 0 in 1D.

Specificities of the 1D-case:
1 A single nonlinear integro-differential equation

2 Explicit solution in the irregular case

3 Finite propagation speed

Open problems: does the regularized solution converge to the explicit irregular solu-
tion?

Y. Penel (CEA) The ABV Model

18 / 26



1. DLMN 2. Theoretical results 3. Interface computations 2.2. 1D

EXPLICIT CALCULATIONS

x

Y 0
ε (x)Y 0(x)

−β0− ε β0 + ε

−L L

1

−β0 β0

Explicit irregular solution in 1D

Y1(t,x) = 1[−β (t),β (t)](x) with β (t) =
β0(

1− β0

L

)
expΨ(t) +

β0

L

.
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DISCRETIZATION

Mismatch between the discrete and continuous levels
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TEST ABV

ABV model: 

∂t Y1 + ∇φ ·∇Y1 = 0,

Y1(0,x) = Y 0(x),

∆φ = Y1−
1
4

∫∫
[−1,1]2

Y1(t,y) dy,

∇φ ·n|∂ Ω = 0.

ψ ≡ 1: constant growth.

The initial datum Y 0 consists of two disjoint circles of different radii.
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TEST ABV

100×100 grid with a refinement rate equal to 6
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CONCLUSION

Done

Existence and Uniqueness Theorem with an approximation of the time interval

Study of the 1D-case

Derivation of a numerical scheme to preserve interfaces

To do

Approximating the time of existence for the DLMN system

Enrichment with physical content

Theoretical studies with irregular initial data
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