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Project #1: numerical simulations of discontinuities

This project is divided into two parts: the first one deals with the design of an antidiffusive

scheme to solve the linear transport equation, while the second one is devoted to the numerical

resolution of the 1D Euler equations. It is mainly inspired from the paper Contact Discontinuity

Capturing Schemes for Linear Advection and Compressible Gas Dynamics written by B. Després

and F. Lagoutière (2001).

1 Transport equation with discontinuous initial data

We aim at solving the following problem in dimension 1:∂tβ + u∂xβ = 0,

β(0, ·) = β0,
(1)

for a constant velocity field u > 0 and a bounded initial datum β0 (with suitable boundary condi-

tions). Given a spatial homogeneous cartesian grid Ij = [xj−1/2, xj+1/2] with centers xj and a time

discretization tn = n∆t, we are interested in numerical schemes reading:

βn+1
j − βnj

∆t
+ u

βnj+1/2 − β
n
j−1/2

∆x
= 0. (2)

This scheme is determined by choosing numerical fluxes βnj+1/2. To ensure L∞ stability and the TVD

property, we would like the fluxes to be such that:

bnj := min
(
βnj , β

n
j−1
)
≤ βn+1

j ≤ Bn
j := max

(
βnj , β

n
j−1
)
. (3a)

A sufficient condition to guarantee (3a) is:

βnj+1/2 ∈ B
n
j :=

[
bnj+1, B

n
j+1

]
∩
[
Bn

j +
∆x

u∆t

(
βnj −Bn

j

)
, bnj +

∆x

u∆t

(
βnj − bnj

)]
. (3b)

As the problem consists in handling discontinuous functions, we would like to avoid any numeri-

cal diffusion. However, this phenomenon is necessary so that the scheme may be stable. Després

and Lagoutière’s idea was to combine advantages from both upwind and downwind strategies by

choosing the numerical fluxes as close as possible to the downwind flux (the downwind scheme is

unconditionally unstable but nondiffusive), which lead them to set:

βnj+1/2 = argmin
v∈Bnj

∣∣βnj+1 − v
∣∣ . (4)

The strategy (2)–(4) under the CFL condition:

u∆t

∆x
≤ 1 (5)

is called the antidiffusive scheme.
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1. Prove that if Condition (3b) is satisfied, so is (3a).

2. Show that the upwind scheme may be written as (2) with fluxes satisfying (3b). Deduce that

Bnj is nonempty.

3. Solve the optimization problem (4).

4. Implement the antidiffusive scheme for β0 = 1[0,0.5] in the domain [0, 1] with periodic conditions.

5. Carry out simulations in order to compare results with other schemes and show the order of

the method.

2 1D Euler equations

We consider in this part the compressible Euler equations in one space dimension:
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x(ρEu+ pu) = 0.

(6)

The system is closed with the equation of state:

p = ρ(γ − 1)

(
E − u2

2

)
.

The algorithm is based on the Lagrange-projection method:1 it is split into two steps, the first one

concerning the evolution of variables in Lagrange coordinates, the second one the projection on the

eulerian grid (which is equivalent to the resolution of an advection equation). Eqs. (6) are equivalent

(under smoothness assumptions) to the system:

ρDtf + ∂xF = 0, f =

τu
E

 and F =

−up
pu

 ,

where Dt = ∂t + u∂x and τ = ρ−1. The Lagrangian step reads:

ρni
f∗i − fn

i

∆t
+

Fn
i+1/2 −Fn

i−1/2

∆x
= 0. (7a)

The other step formally corresponds to the resolution of:

∂t(ρf̃) + ∂x(uρf̃) = 0, f̃ =

1

u

E

 .

1Which corresponds to an operator splitting.
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Hence the projection scheme:

ρn+1
i f̃

n+1
i − ρni f̃

∗
i

∆t
+
uni+1/2ρ

∗
i+1/2f̃

∗
i+1/2 − uni−1/2ρ

∗
i−1/2f̃

∗
i−1/2

∆x
= 0. (7b)

Let us now focus on the definition of fluxes appearing in (7a) and (7b). For the first step, we set:

pni+1/2 =
pni + pni+1

2
+

(ρc)ni+1/2

2
(uni − uni+1),

uni+1/2 =
uni + uni+1

2
+

1

2(ρc)ni+1/2

(pni − pni+1),

(ρc)ni+1/2 =

√
max

{
ρni (cni )2, ρni+1(c

n
i+1)

2
}

min
{
ρni , ρ

n
i+1

}
.

Here, c denotes the sound velocity given by c =
√
γp/ρ. As for the second part, we follow the

example of § 1 by introducing a parameter θi+1/2 ∈ [0, 1] such that:

ρ∗i+1/2f̃
∗
i+1/2 = θi+1/2ρ

∗
i f̃
∗
i + (1− θi+1/2)ρ

∗
i+1f̃

∗
i+1.

The objective is to have θi+1/2 as close as possible to 0 (for uni+1/2 > 0) or to 1 (otherwise) in order

to avoid diffusion. Similarly to what we presented in the first part for the resolution of (1), the

stability condition provides three intervals for θi+1/2. It is possible to show that these three intervals

are nonempty as well as their intersection (refer to Lagoutière’s PhD. Thesis available on its web

page).

1. Combining (7a) and (7b), show that the scheme is consistent with Eqs. (6).

2. Implement this method for the Sob shock tube in dimension 1.

3 Directions

You may write a report answering the questions and presenting relevant simulations to emphasize

advantages and drawbacks of each method. You are expected to deliver codes and report on March

8., 2011 by email to:

thierry.goudon@inria.fr ; sebastian.minjeaud@inria.fr ; yohan.penel@inria.fr

A presentation session will be held on March 11., 2011 at 3pm. You will outline the methods and

present striking results in 20 minutes.
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