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We describe in this paper the improvement on the numerical resolution of a fluid dy-
namics system by means of an Adaptive Mesh Refinement algorithm in order to handle
an infinitely thin interface. This model is derived from the compressible Navier-Stokes
equations in the case of diphasic flows for which both phases have a low Mach number.
It consists of a coupled hyperbolic-elliptic system. The first part is numerically treated
thanks to a hierarchical grid structure whereas we use the Local Defect Correction method
to solve the second part.

I. Introduction

In the framework of safety evaluations for nuclear reactors, we are interested in studying the evolution
of gas bubbles in a liquid phase. Indeed, in Pressurized Water Reactor (PWR) or in Boiling Water Reactor
(BWR), a vapor phase may appear in the liquid phase. As progress in Computer Science over the past
decades enables us to take into account a large range of spatial scales from the mesoscopic one (bubble scale)
to the macroscopic one (reactor scale), it makes possible further use of Direct Numerical Simulation (DNS)
and thus the numerical treatment of fine safety evaluations.

The main difficulty in this kind of problems is the modeling of the interface deformation. There exists
several methods to handle such issues among which we choose an interface-capturing type algorithm. It
consists in representating implicitly the discontinuity by means of the resolution of a transport equation of a
discontinuous marker function (via an antidiffusive scheme) instead of reconstructing explicitly the interface.
This transported function is a color function, namely the mass fraction of one phase, that indicates whether
this phase is present or not.

As for the global system including velocity, density and energy behaviors, we derive a set of equations from
the compressible diphasic Navier-Stokes equations through a formal asymptotic expansion under physical
then nonphysical hypotheses: these assumptions concerned the density variable, the common properties of
the two fluids and finally a potential characteristic of the velocity. The last step is then a modification of
the right-hand-side of one of the equations that makes the thermodynamic variables evolution uncoupled
from the velocity equation. This boils down to studying the coupling between a transport equation with a
Poisson-like one. Even if this system of Partial Differential Equations (PDEs) is lacking in physical sense,
its mathematical properties are useful to study the real physical system from both theoretical and numerical
points of view. Despite a brief explanation about the derivation of the model, we will focus mainly on
numerical aspects in this article.
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The fact still remains that most variables are discontinuous through the interface. That is why a refine-
ment strategy turns out to be useful. However, instead of refining everywhere (computationally costly), our
algorithm is based on Adaptive Mesh Refinement (AMR) techniques applied close to the discontinuity of the
solution of the transport equation. As regards to the elliptic equation governing the potential velocity field,
we use the Local Defect Correction (LDC) method.

II. From Navier-Stokes to an abstract bubble vibration model

We consider in our model a single set of equations governing the evolution of both phases. The Navier-
Stokes equations for a compressible diphasic flow under gravity read in a conservative form:

∂t(ρY1) +∇ · (ρY1u) = 0 , (1a)
∂tρ+∇ · (ρu) = 0 , (1b)

∂t(ρu) +∇ · (ρu⊗ u) = −∇P +∇ · σ + ρg , (1c)
∂t(ρE) +∇ · (ρuE) = −∇ · (Pu) +∇ · (κ∇T ) +∇ · (σu) + ρg · u . (1d)

We consider System (1) in a bounded open set Ω ⊂ Rd, d ∈ {2, 3}. The notations are standard: ρ, u, σ, P , T ,
E, κ and g denote respectively density, velocity field, Cauchy stress tensor, pressure, temperature, energy,
thermal conductivity and gravity field. We use the classical nabla notation ∇ for all spatial differential
operators (gradient, divergence). Y1 is the mass fraction of Fluid 1 that corresponds to the characteristic
function of the domain Ω1(t) occupied by Fluid 1. If Fluid 1 occupies initially a domain Ω1(0) ⊂ Ω, the
initial condition associated to Eq. (1a) is:

Y1(0,x) = 1Ω1(0)(x) =

1, if x ∈ Ω1(0),

0, otherwise.
(2)

We denote by Ω2(t) the domain occupied by Fluid 2, i.e. Ω2(t) = Ω\Ω1(t), and by Σ(t) = Ω1(t) ∩Ω2(t) the
discontinuity surface of Y1. Capturing the interface evolution is equivalent to solving Eqs. (1a)–(2) and thus
determining Ω1(t) for all t > 0.

Under linear elasticity hypothesis, the Cauchy stress tensor writes:

σ = µ(∇u+ t∇u) + λ(∇ · u) Id (3)

where µ and λ are Lamé coefficients.

As we use a single system for both phases, any state variable ξ on the whole domain is a convex combination
of its values in each subdomain, that is:

ξ = Y1ξ1 + (1− Y1)ξ2 (4)

where ξi is the corresponding value of variable ξ in the domain Ωi(t). We finally add to System (1) boundary
conditions on ∂Ω

u
∂Ω= 0 , (5a)

∇T · n ∂Ω= 0 (5b)

as well as interface continuity conditions (where I is the identity tensor)

u|Ω1(t)
Σ(t)
= u|Ω2(t) ,

[σ − PI]n|Ω1(t)
Σ(t)
= [σ − PI]n|Ω2(t) ,

T|Ω1(t)
Σ(t)
= T|Ω2(t) ,

κ1∇T · n|Ω1(t)
Σ(t)
= κ2∇T · n|Ω2(t) .

(5c)
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What follows is an adaptation to diphasic flows of earlier works about low Mach Number combustion
systems of Majda and Embid.10 Concepts and techniques are applied to Eqs. (1–5) in order to obtain a low
Mach number system simulating bubble behaviors in nuclear reactors.6,7

We assume on the one hand that ρ is a positive smooth function of (t,x) and on the other hand that
both fluids have common characteristic values such as Reynolds or Mach Numbers (Re∗, M∗).

Moreover, we suppose that we have a low Mach number flow, that reads M∗ � 1. Hence we can make
a formal asymptotic expansion:

ξ(t,x) = ξ(0)(t,x) +M2
∗ · ξ(1)(t,x;M∗) + o(M2

∗). (6)

We insert that expansion in the nondimensioned nonconservative system derived from Eq. (1) and we use the
Hodge decompositiona to obtain the following dimensioned Diphasic Low Mach Number (DLMN) system at
order 0:

DtY1 = 0 , (7a)
∇ · u = G , (7b)

ρDtu = −∇Π +∇ ·
[
µ
(
∇u+ t∇u

)]
+ ρg , (7c)

ρcpDtT = αTP ′(t) +∇ · (κ∇T ) , (7d)

where we introduce some standard thermodynamic notations:

• α = −1
ρ

(
∂ρ

∂T

)
P

is the compressibility coefficient;

• cp =
(
∂ε

∂T

)
P

+
αP

ρ
is the heat capacity at constant pressure; ε is the internal energy;

• Dt = ∂t + (u · ∇) is the material derivative;

• −∇Π is the Hodge projection upon the gradient field of ρDtu − ρg − ∇ ·
[
µ
(
∇u+ t∇u

)]
; Π can be

interpreted as a dynamic pressure whereas P is the thermodynamic pressure. As detailed in Refs. 6,10,
the pressure variable P is spatially homogeneous owing to the singularity in M∗;

• equation (1b) is rewritten under the form ∇·u = G so as to underline the compressibility of the fluids.
Function G can be expressed as follows:

G = −Dtρ

ρ
= − 1

Γ
P ′(t)
P (t)

+
β∇ · (κ∇T )

P (t)
. (7e)

We introduced here the nondimensioned coefficient β =
αP

ρcp
as well as the sound velocity c deduced

from
1
c2

=
(
∂ρ

∂P

)
T

− α2T

cp
in order to define Γ =

ρc2

P
.

We finally assume that the velocity is potential, i.e. that there exists a potential φ such that u = ∇φ. This
is equivalent to assuming that the free-divergence part of u is zero. System (7) thus amounts to:

DtY1 = 0 , (8a)
∆φ = G , (8b)

ρcpDtT = αTP ′(t) +∇ · (κ∇T ) (8c)

together with initial condition (2) and boundary conditions:

∇φ · n ∂Ω= 0 , (8d)

∇T · n ∂Ω= 0 . (8e)

aEach field u ∈
(
L2(Ω)

)2
writes as the sum of a gradient field and a free-divergence one: there exists (φ,w) ∈ H1(Ω) ×(

L2(Ω)
)2

such that ∇ ·w = 0, w · n|∂Ω = 0 and u = ∇φ+ w.
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This system – that we name potential-DLMN system – is numerically simulated in Ref. 7 without AMR.
Let us make a few comments on System (8). First, whereas Eq. (7b) was a vector second-order PDE with
respect to u, System (8) becomes a scalar second-order PDE with respect to φ. The latter system does not
require the strong boundary condition (5a) anymore. That is why we just impose the Neumann boundary
condition (8d) for φ. Secondly, we recall that there exists a unique solution (up to an additive constant) to
Eqs. (8b)–(8d) provided that:b ∫

Ω

G(t,x) dx = 0. (9)

Given Eq. (7e), the necessary and sufficient condition (9) is equivalent to the integro-differential equation
for P :

P ′(t) =

∫
Ω

β(Y1, T, P )∇ · (κ∇T ) dx∫
Ω

1
Γ(Y1, T, P )

dx

. (10)

The notations β(Y1, T, P ) and Γ(Y1, T, P ) mean that β and Γ depend on the set of variables (Y1, T, P ) we
decided to work with but are not necessarily explicit functions. Moreover, we should bear in mind that
the right-hand-side G of the Laplace equation also depends on the same variables, which implies a coupling
between Eqs. (8a–8c)-(10). In order to analyze theoretically and numerically the coupled hyperbolic-elliptic
structure of Eqs. (8a)–(8b) independently from Eqs. (8c)-(10), we modify G so that it does not depend on T
and P anymore. A simple model of functional of variable Y1 that satisfies the condition (9) is the projection
P on the space of zero mean-value functions. Thus, we get interested in studying the following system called
Abstract Bubble Vibration (ABV) model:

∂tY1 +∇φ · ∇Y1
Ω= 0 , (11a)

∆φ Ω= ψ(t)P(Y1) , (11b)

Y1(0,x) Ω= Y 0(x) , (11c)

∇φ · n ∂Ω= 0 (11d)

with P given by:

P(Y1) = Y1(t,x)− 1
|Ω|

∫
Ω

Y1(t,x′) dx′. (11e)

The function ψ is a given smooth function on (0,+∞) that is considered as a pulse and Y 0 is given by
Eq. (2).

The change of right-hand-side results in the absence of thermodynamic effects. Although this system has
thus no longer physical sense, it is important for its mathematical structure. It also enables us to validate
our interface-capturing algorithm. Indeed, under a smoothness hypothesis on Y 0, there exists a unique
solution of System (11) in a Sobolev-type functional space (see Ref. 8). This is an important result for
the more general study of System (7). Otherwise, if Y 0 is the nonsmooth function given by Eq. (2) and if
Y1(t,x) = 1Ω1(t)(x) is a solution of System (11), we have an explicit expression of the volume |Ω1(t)| (see
Lemma 1.1, Ref. 8):

|Ω1(t)| = |Ω| ×
C0 exp

∫ t

0

ψ(τ) dτ

1 + C0 exp
∫ t

0

ψ(τ) dτ
, C0 =

|Ω1(0)|
|Ω| − |Ω1(0)|

. (12)

This result provides a criterion so as to check the robustness and the efficiency of our algorithm that is based
on the Després-Lagoutière antidiffusive scheme9,13 applied to the transport equation (11a). This first-order
scheme is equivalent to the UltraBee scheme in spite of a different formulation. It consists in mixing main
advantages of downwind (nondiffusive) and upwind (stable) schemes. One of its main properties is a uniform
control over numerical error on a few cells. This property guarantees that the transported interface remains
as sharp as possible.

bSee Ref. 5 for instance.
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III. AMR strategy

Our goal in this section is to solve numerically the set of coupled PDEs (11). Although the Després-
Lagoutière algorithm captures interfaces with a diffusion control, situations occur where it may become
inefficient. For instance, the fluid characteristic length may become smaller than the grid size or the distance
between two interfaces may decrease too much. Thus, to improve both accuracy and efficiency, we would like
to increase the number of nodes but to avoid adding unrelevant points. That is why we refine grids locally
close to interfaces in order to reduce computational costs and to keep the interface sharpness. Morever,
given that these interfaces may evolve in time, the refinement must adapt to the solution at each time
step. Considering all these remarks and taking into account the nature of the two PDEs, we adopt two
different strategies to solve hyperbolic and elliptic parts, that are an AMR technique to capture accurately
the interface (Eqs. 11a-11c) and the LDC method to solve the steady Laplacian operator (Eq. 11b-11d).

A. Hyperbolic part

This choice raises several issues such as selection of relevant regions to be refined, way of refining the latter
or interactions between coarse and fine grids. Those points are treated in the AMR techniques developped
in Refs. 2, 3, 12,14,16.

1. Theory

We consider in this section a transport equation with a prescribed velocity field v:

∂tY + v · ∇Y = 0. (13)

We would like to solve Eq. (13) on a rectangular 2D-Cartesian grid of size N = nx × ny with grids cells
(Mi)16i6N . Let G0 =

⋃
16i6N

Mi be the coarsest level grid. Unknowns are located at centers of cells.

AMR-type methods generally consist in:

1. tagging grid regions that need a higher resolution owing to large variations of the solution;

2. clustering the tagged cells into subgrids called patches;

3. refining patches according to fixed ratios.

Step 1 is realized thanks to a criterion called sensor and a user-tuned threshold ε. Here, we tag cell Mi if

|(∇xY )i|+
∣∣(∇yY )i

∣∣
max
n,m

[
|(∇xY )n|+ |(∇yY )m|

] > ε (14)

where (∇x·)i and (∇y·)i denote discrete gradients along x and y directions in cell Mi. As for Step 2, we
use the Grouping-Clustering algorithm introduced in Ref. 4 except we do not allow overlapping patches.
In refinement methods, we must keep in mind that there should be a balance between the two following
requirements:

• there should be as few patches as possible to reduce computational costs;

• patches should be as small as possible to avoid unnecessary refined area.

We denote by (Gl)06l6Lmax
successive levels of refinement called patchworks and by (Gkl )16k6Kl

patches of
the same level l of refinement. The grouping-clustering algorithm is based on a hierarchical grid structure
that has a Properly Nested property14 (see Figure 1):

1. Successive refined patchworks are imbedded in coarser ones: GLmax ⊂ . . . ⊂ Gl ⊂ . . . ⊂ G0;

2. Patches of the same refinement level do not overlap: ∀ l ∈ [[0, Lmax]],∀ (i, j) ∈ [[1,Kl]]2, Gil ∩G
j
l = ∅;

3. Adjacent cells to Gl must belong to Gl−1. This last requirement guarantees that there always exists
some cells in Gl−1 that separate Gl from Gl−2\Gl−1.
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Figure 1. Example of a hierarchical grid structure satisfying the Properly Nested property.

We also mention that this algorithm includes the use of additional cells to handle boundary conditions:
in order to prevent interfaces from crossing patchworks boundaries, we extend patches to one or more cells
around them, the number of necessary cells being prescribed by the numerical scheme, e.g. 2 for the Després-
Lagoutière scheme.

2. Implementation

The core of this method is based on integrations on the coarse grid then on finer grid patches in order to
increase accuracy. However, those computations should interact with each other through boundary conditions
(BC) which can be of different types. First, we have to compute connexions between subgrids and then to
apply adapted BC. Connexions can characterize:

/ physical conditions when the subgrid has common points with ∂Ω. There is nothing else to do but
using explicit boundary data;

/ fine-fine interfaces when ghost cells associated to a given patch belong to another patch at the same
level of refinement. In this case, we use values at the center of ghost cells to impose BC;

/ coarse-fine interfaces when ghost cells belong to another level of refinement, whether it be finer or
coarser. We use interpolations to determine BC.

For sake of simplicity, we just detail in Figure 2 the successive steps from time n to n+1 to solve Eq. (13)
when there is only one level of refinement. G0 is the coarse grid and G1,n is the evolving fine grid at time
n. Function Y nGα is the numerical solution at time n on grid Gα. The solver Sα is the Després-Lagoutière
scheme used on Gα to solve transport equation (13). More precisely:

¬ Steps 1 and 1’ correspond to the application of solvers S1,n and S0 resp. and are computed simultane-
ously;

­ We project Y n+1
G1,n

on G0 applying the restriction operator Rn+1
0 : we average fine grid values in each

coarser cell;

As for Step 2’, simultaneously to Step 2, we only keep values of Y
n+1

G0
at mesh cells that belong to G0

but do not intersect G1,n;

® We gather values of the coarse and fine solutions at time n+ 1 to recover Y n+1 on G0;

¯ We construct the new fine grid G1,n+1 judging from the selected nodes via Criterion (14) and the new
coarse solution Y n+1

G0
;

° Given G1,n+1 and Y n+1
G0

, the projection step consists in interpolating the latter solution at new grid
points;

± Even if the fine mesh may evolve from time n to n+ 1, it is likely to occur that some points belong to
both old and new fine grids. In that case, we recopy old fine solution values

(
Y n+1
G1,n

)
at those points

and new values
(
Y
n+1

G1,n+1

)
at others. The corresponding operator is called Un+1

n .
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Y nG1,n

Y nG0

Y n+1
G1,n

Y
n+1

G0

Y n+1
G0∩G1,n

Y n+1
G0\G1,n

Y n+1
G0

Y n+1
G1,n+1

G1,n+1

Y
n+1

G1,n+1

1

S1,n

1’

S0

2

R1,n
0

2’

3

3

4

5
5

6

Un+1
n

6

Figure 2. Scheme from time n to n+ 1. Green (plain), Blue (dashed), and Red (dots) bubbles are respectively
data at time n, intermediate calculated values, and required data at time n+ 1. Close to arrows, Violet (thin)
and Orange (thick) bubbles correspond to operators and successive steps.

We should bear in mind that both solutions Y nG0
et Y nG1,n

may have components 1 or 0. Thus, projection
steps ­ and ° may induce numerical errors. In case there are common new and old fine cells, we avoid
diffusing the interface thanks to Step ±.

Complex though Figure 2 may seem, it corresponds to a standard resolution of an advection equation
on different grids (Steps 1 and 1’). Following steps are communications between those grids and consist
of interpolations, operations on vectors and selection of more adapted grids. Results are exactly the same
as those obtained with a global refinement, except for the fact that we improve efficiency by reducing
computational costs. This is a consequence of the control of diffusion thanks to the Després-Lagoutière
scheme: the interface is captured precisely and thus embedded into the fine grid. That would not be the case
with the upwind scheme for instance. The coarse solutions Y nG0

provide a prediction of how the discontinuity
may move whereas we use fine solutions Y nG1,n

to compute more accurate values in regions of high activity.

3. Numerical results

We test here the AMR algorithm coupled with the Després-Lagoutière scheme on a 3D-advection equa-
tion (13) with initial condition shown on Figure 3(a) and with divergence-free velocity:

v(t, x, y, z) = cos
(

2πt
T

)2 sin2(πx) sin(2πy) sin(2πz)
− sin2(πy) sin(2πx) sin(2πz)
− sin2(πz) sin(2πx) sin(2πy)


in the domain [0, 1]3 (here T = 1

6 ). The coarser grid G0 has sizes ∆x = ∆y = ∆z = 1
64 . We use just one

level of refinement G1. Since we set the refinement rate equal to 10, the finer grid size in all directions is
1

640 . We see on Figure 3(c) the moving patches matching the interface.
This is an interesting case to test the accuracy of an algorithm since after one period we should recover

the initial condition. As in the 2D-case (see Ref. 15 for details on the prescribed velocity: Figs. 25-26), the
thickness of the bubble becomes smaller than the grid size and this makes the bubble break (see Figure 3(e)).
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(a) Initial condition (b) Numerical solution at time 2min 11s (with
AMR)

(c) Numerical solution at time 2min 11s with
AMR patches

(d) Numerical solution at time 3min (with AMR)

(e) Numerical solution at time 2min 11s (without
AMR)

(f) Numerical solution at time 3min (without
AMR)

Figure 3. Figures (a)–(d) show the deformation of a 3D-bubble due to a rotational periodic velocity field
simulated with the described AMR-type method. As for Figures (e)–(f), there is no refinement.
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This motivated our studies about improvements thanks to AMR. In this particular case, we see on
Figure 3(d) the gain of AMR compared to the result on Figures 3(e)-(f). Looking at Figures 3(b) and 3(e)
may suggest that this method avoids numerical mass loss and bubble breakings because of its accuracy in
high activity regions, i.e. close to the interface where the solution shifts from 1 to 0. As regards efficiency,
the algorithm is around fifty times faster than with a global refinement equivalent to the finest grid. We
thus decrease drastically computational costs as well as use of memory.

B. LDC method for elliptic PDEs

We refer to the earlier works of Hackbush11 and Anthonissen1 for more details about Local Defect Correction
Methods. Contrary to the latter authors, we use a staggered grid with nodes at centers of cells. We present
here a simple application to the uncoupled Poisson-type PDE (11b)-(11d) assuming Y to be a datum. This
assumption amounts to considering the standard system in a bounded open domain Ω:∆φ Ω= f ,

∇φ · n ∂Ω= 0,
provided that

∫
Ω

f(t,x) dx = 0. (15)

The idea of the LDC method consists in an iterative process involving resolution on two different levels of
grids. If we know that the solution of Eq. (15) has large variationsc in a subset Ωl ⊂ Ω, we construct:

• a coarse mesh G0 with size H > 0. (Ai)16i6N are the centers of G0 cells, ΩH = {Ai, 1 6 i 6 N} and
AH = co(Ai) are respectively the set and convex hull of those nodes;

• a finer grid G1 of size h < H. We note Ωhl and Ahl the set and convex hull of G1 vertices. Grid G1 is
such that Ωl ⊂ Ahl .

See Figure 4. We first solve:
∆HφH0 = fH (16)

on ΩH where ∆H is the standard five-point discretization.d The right-hand side in Eq. (16) takes into
account the source term f and the Neumann BC. Once Eq. (16) solved, we consider the local problem on
Ωhl imposing Dirichlet conditions φh0 = PHh (φH0 ). The projection PHh corresponds to an interpolation at fine
grid nodes located at the interface ∂Ahl except at those potential ones belonging to adjacent cells to ∂Ω: as
∂G1 ∩ ∂Ω might be nonempty, BC can be pure Dirichlet or mixed Dirichlet-Neumann type (see Figure 4 for
an example). If a node belongs to a cell that is simultaneously adjacent to the physical boundary ∂G1 ∩ ∂Ω
and to the inner one ∂(G0\G1), we can impose either Dirichlet or Neumann BC. In all cases, the problem:

∆hφh0 = fh (17)

is well-posed, using a five-point stencil for ∆h. Given φh0 , we now go back to the coarse problem solving:

∆HφH1 = fH + dHl,0. (18)

In Eq. (18), the perturbation dHl,0 is the residual on ΩH ∩ Ahl . More precisely, we correct locally the dis-
cretization error with φH0 by means of the more accurate solution φh0 . We iterate the process, alternating
corrected Neumann problems (18) and updated Dirichlet (or mixed Neumann-Dirichlet) problems (17).

IV. Numerical results

We combine in this last section the two algorithms developped above for hyperbolic and elliptic equations
in order to solve the ABV model (11).

The 2D-example that we treat here corresponds to the initial condition on Figure 5(a), i.e. Ω = [−1, 1]2

and Ω1(0) is the union of two disjoint circles. We set ψ ≡ 1 in Eq. (11b) that corresponds to a uniform
dilatation and we discretize Ω with a 100× 100 grid. Refinement rate in patches is equal to 6.

cIn our particular case, Ωl is determined during the hyperbolic step of the algorithm.
dOn the coarse grid, the Neumann problem (15) is ill-posed. The operator ∆H is solved with a modified Conjugated Gradient

method forcing the solution to stay in the zero mean-value function space.
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Ω Ωl

ΩH Ωhl

Neumann
Boundary
Conditions

Figure 4. Example of LDC-type grids with h = H/2. Larger circle nodes belong to the coarser grid G0 whereas
grid G1 consists of blue nodes (squares, diamonds and small balls). Squares correspond to Dirichlet boundary,
diamonds to Neumann boundary and balls to inner points. Circled squares can be applied either BC.

There is an obvious numerical gain applying our algorithm. Indeed, as coalescence is not supported by
our model at the continuous level, Figure 5(d) shows that results obtained without the techniques described
above are not coherent with our model. With higher resolution, we check that interfaces remain intact and
that there is no coalescence (Figures 5(a)–(c)). Those results make us think that increase in accuracy enables
to recover physical properties. Morever, as showed in Figure 5(e), our method provides a perfect matching
between exact and computed volumes, while without AMR, volume increases more slowly than it should do.
Exact volume is computed by means of Formula (12). Here the function ψ is constant and we notice that
the volume computation in the case without AMR worsens when we choose ψ with larger variations.

We finally notice that even if the two interfaces are initially recovered by disjoint patches, they are getting
so close that single patches are enough to capture them.

V. Conclusion

We have presented the combination between three algorithms so as to solve a system of coupled hyperbolic-
elliptic partial differential equations. We apply the Després-Lagoutière scheme to handle the advection
equation, an AMR-type technique to improve the accuracy in the resolution of the latter equation, and
finally a LDC-type method to treat the Laplace equation. Finer grids are used to adapt to the current
solution variations, especially to capture interfaces in bubble modeling. Numerical simulations emphasize
both performance and relevance of our method due to an increased accuracy, a faster resolution and savings
in memory. Morever, we can readily contemplate parallelization in order to obtain faster results due to the
structure of our code.

However, the system of PDEs we simulated here is derived from more physical systems. As our algorithm
accurately simulates the Abstract Bubble Vibration model, it may turn out to be useful to study the potential-
DLMN system which consists of a temperature evolution equation and a similar system to the studied ABV
model with more complex coupling. Further studies will involve the global DLMN system with the non zero
free-divergence part of the velocity field.
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(a) Initial condition (b) Numerical solution at time 2s with
AMR-LDC

(c) Numerical solution at time 3s with
AMR-LDC

(d) Numerical solution at time 3s with-
out AMR-LDC

(e) Volumes

Figure 5. Figures (a)–(c) show the evolution of two bubbles governed by the ABV model with AMR-LDC.
Figure (d) is obtained without any refinement technique. Figure (e) shows a comparison between exact and
computed volumes with and without AMR.
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